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We present Exposure Projection (EP), an approach to the analytic computation of first order exposure to 
risk factors in financial models which yields dramatic performance improvements over the use of finite 
differences in typical applications. We demonstrate a mature implementation of EP within FINCAD’s F3 
Enterprise Valuation and Risk Platform, called Universal Algorithmic Differentiation™ (UAD). 

Exposure Projection represents an advance over the state of the art in analytic first order risk computation, 
in a number of ways. The set of quotes to which a portfolio is exposed is identified automatically. By 
avoiding operator overloading, we can choose the optimal granularity at which the chain rule encodes the 
differentiation and avoid the high storage and run-time costs associated with other implementations. We 
present three performance optimizations suited to calculation trees with specific structural properties and 
provide a generic approach to handling discontinuities, including those present in sorting algorithms. The 
analytic computation of first order risk has been popularized in the finance industry in recent years under 
the umbrella term “Automatic Differentiation” (AD). We conduct a brief survey of techniques available in the 
AD literature and compare them with EP. 

UAD enables analytic exposure calculation within a generic architecture for derivative valuation, in 
contrast to the bulk of the literature, which presents model or trade-specific examples. This guarantees 
fast, analytic exposure calculation for all valuations, vanilla to exotic, single trade to portfolio, under all 
models and valuation methodologies. We demonstrate UAD in a closed-form setting by hedging the market 
risk of a multi-currency portfolio of derivatives, and in a Monte Carlo simulation by applying UAD to the 
portfolio’s CVA in a 2-currency FX-rates-equity hybrid model. 

In times of crisis, the measurement, understanding and management of risk is brought into sharp focus. 
In the uncertain economic times of the current post-crisis landscape, exotic derivatives and the associated 
models are regarded with suspicion. The major challenges of quantitative finance are not in the realm of 
high theory for modeling a particular asset class for exotic valuation, but are in the areas of counterparty 
exposure calculation and the aggregation of risk across desks and businesses. Questions such as “How do I 
hedge my portfolio?” and “How does this trade impact the bank’s capital requirements?” are in the spotlight. 

There are many sources of risk: operational, market, liquidity and so on. Our focus in this article is market 
risk. Within market risk, the front and middle offices emphasize different aspects and calculations. Traders 
in the front office are concerned with profit and loss on their books and as such, for a calculation to be 
relevant to the business, it must impact the bottom line by assisting in decisions whose outcome can be 
monetized by trading in the markets. The canonical example of such activity is hedging, for which the first-
order exposure (that is, sensitivities - like an option’s Greeks such as delta and vega) of a trading book to 
market risk factors is commonly used.

1.0  
Abstract

2.0 
Introduction 

http://www.fincad.com/derivatives-solutions/f3/default.aspx
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Before a trading book is hedged, it must be valued. Accurate valuations of derivative portfolios must 
account for counterparty risk. We described the construction of an appropriate and consistent collection 
of curves that forms the static part of a model, for the valuation of vanilla portfolios in the context of the 
relevant set of collateral agreements, in Gibbs and Goyder (2012). Exposure to counterparty default is 
also encoded in a Credit Value Adjustment (CVA) applied to a given trade, to calculate a new price that takes 
such risk into account. The calculation of both vanilla portfolio’s value and CVA can result in outcomes that 
can be measured in the profit and loss of a trading desk. 

This contrasts with middle office roles who are asked to calculate more subjective measures of risk such 
as Value-at-Risk (VaR) and Potential Future Exposure (PFE). These fall into a category of calculations based 
on statistics (such as percentiles) of distributions of portfolio value over potential market scenarios. The 
distributions chosen are not pricing distributions taken from the market, but adjusted in a variety of ways, 
usually so that the implied probability of future events matches some understanding of or assumptions 
about reality, which in turn is often based on an extrapolation of history. 

This article focuses on the problem of computing of first-order exposure, which is of primary application to 
hedging in the front office. We introduce a new approach to this problem called Exposure Projection (EP), 
which displays a number of advantages over existing methods in the literature. In addition, we demonstrate 
a complete implementation of Exposure Projection called Universal Algorithmic Differentiation™ (UAD), 
within F3, a modern analytics platform whose architecture represents a distillation of the accumulated 
wisdom of over two decades of sell-side analytics platform development. While F3 supports the 
full spectrum of calculations described above, we concentrate here on first-order exposure. 

Denote the exposure of a portfolio of value  to one of the  market quotes on which 
its value depends, , by  . This is a generalization of the meaning of  in the specific context of option 
pricing, where  is the spot price of the underlying.   is the partial derivative of   with respect to  : 

 
Computing  is traditionally achieved by the method of finite differences, or “bump and grind”. For 
some small (often one basis point) bump size  ,   is commonly approximated based on the 
forward difference between the portfolio value at each point, as follows. Using the short-hand ,

  we have 

 
where . The cost of this approach scales linearly with the number of risk factors of 
interest. For all but the smallest vanilla portfolios, this means that exposure to every relevant quote is 
seldom calculated in practice. Rather, approaches such as bumping an entire collection of market quotes 
(“bumping the yield curve”) are followed. Another consequence is that some quotes can be ignored and 
relevant exposure missed because intuition, not computation, is used when exploring exposure. Conversely, 
for a comprehensive calculation of portfolio exposure, hardware can be thrown at the problem, with the 
result that banks have some of the largest implementations of grid and cloud computing infrastructure in 
private enterprise. 

2.0 
Introduction

http://www.fincad.com/derivatives-solutions/f3/default.aspx
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In contrast to this brute-force approach to exposure calculation, it is possible to compute  exactly, at a 
computational cost that is essentially constant with respect to the number of risk factors, by applying the 
chain rule of differential calculus. This represents a significant advance over the bump-and-grind status quo, 
resulting in many cases in several orders of magnitude of computational speedup. 

Methods for implementing the chain rule are being popularized at the moment, under the umbrella of 
Automatic Differentiation (AD). While new to many, AD itself is decades old and a number of examples of 
such analytic exposure calculations are available in the academic literature. However, these methods suffer 
from a variety of drawbacks, including:  

 • The set of risk factors to which exposure is calculated,  , and therefore the size of that set, 
must be known in advance.

 • The set of risk factors that can be handled is rather small. 

 • Implementations cover special cases. The academic financial engineering literature provides 
some ideas and techniques, along with some prototype implementations. Within industry, 
implementations do exist in production systems, but only for some trades in some areas of some 
institutions. 

 • Software tools attempt to add analytic exposure computation to existing code, rather than 
designing it in from the start, resulting in missed opportunities for optimization. 

 • Potentially troublesome storage requirements for the intermediate variables used in the 
calculation. 

In contrast, Exposure Projection (EP) gives the relevant set of risk factors  as an output for essentially 
any derivative or portfolio, in any supported valuation approach, whether Monte Carlo simulation, closed-
form, or backward-propagation in Fourier space (Cherubini (2010)). EP was designed into F3 from the start, 
resulting in a mature, stable, comprehensive and efficient platform for analytic risk computations that is 
unique among analytics vendors and, to the best of our knowledge, unparallelled by any analytics platform 
on the planet. 

This article explains how to construct such a capability. It starts with a description of Exposure 
Projection itself and the fundamental ideas on which EP is based in Sec. 3 (Page 6). We then move 
through the calculation stack in Sec. 4 (Page 17) and in doing so, cover the analytic calculation of the 
exposure of derivative payoffs to model parameters. In Sec. 5 (Page 21) we deal with the problem of 
propagating analytic exposure through an arbitrary calibration procedure, and then explain how to deal 
with discontinuous payoffs in Sec. 6 (Page 28). 

Having established the fundamentals of Exposure Projection, in Sec. 7 (Page 31) we describe some 
refinements and optimizations of primary interest in specific computational settings, then demonstrate the 
capability, giving performance measurements, in Sec. 9 (Page 47). In Sec. 8 (Page 43) we conduct a survey 
of Automatic Differentiation and highlight the advances made by Exposure Projection before concluding in 
Sec. 10 (Page 54).

2.0 
Introduction
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The foundation of analytic exposure is differential calculus. For the portfolio V in Sec. 2 (Page 3) (whose 
value is given by , we can write 

The content of any exposure calculation is embodied by the pairing of  with . While  is just a set of 
numerical values, in order to form an adequate representation of the information associated with , a 
richer conceptual structure is required. We explore this structure in Subsec. 3.1 (Page 6) before proceeding 
to an explicit treatment of exposure calculation in Subsec. 3.3 (Page 10) and Subsec. 3.4 (Page 13).

While the final answer for any exposure calculation is the set , in order to construct a useful report, 
these numbers must be labelled in some manner. We can base such labels on information associated with 
the  because they represent the factors to which the portfolio V is exposed. Such numbers are almost 
always grouped together in sets of a common type and that type is essentially the class of instrument 
for which they are quotes. For example, we might want to know the exposure of our portfolio to the par 
OIS rates used to build the discount curve, or the cross-currency swap par rates used to imply the discount 
curve in another currency. 

We have, then, part of our labelling scheme - we need something that encodes the type of instrument 
quoted in the market. The remaining information required to uniquely identify one of the  is something 
that selects one instrument within the instrument type. For many instrument types, such as the swaps 
mentioned above, there is a clear one-to-one map between  and the maturity of the quoted instrument. 
Other instrument types however, require more than a single maturity to specify them completely. For 
example, swaption quotes populate a volatility cube, whose axes are defined by the strike and expiry of 
the option together with the length of the swap resulting from exercising the option. There is clearly an 
abstraction emerging, which we term QuoteSpecification, that encodes the idea of the information that 
maps to  for a given type of instrument. Before defining it explicitly, however, we must be more precise 
about what we mean by “type of instrument”. 

Here, we meet a very intuitive concept, for which we can easily give many examples, but whose rigorous 
definition is somewhat abstract, though highly useful. Examples include LIBOR swaps, cash deposits, OIS, 
European equity options, swaptions, futures and many more. 

3.0 
The Conceptual  
Structure of Exposure 

3.1 
Market Data 
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As described in Goyder and Gibbs (2012), a Product encodes the legal terms of a trade and forms one of the 
fundamental abstractions of F3. The utility of the InstrumentType concept resides in the ability to define 
a single operation which, for any instrument, constructs the corresponding Product. As demonstrated in 
Gibbs and Goyder (2012), the canonical application of this capability is to ensure that the calibration of a 
Model (again, see Goyder and Gibbs (2012)) is consistent with subsequent valuations based on the Model. 

For example, the InstrumentType for a vanilla US dollar LIBOR swap includes information such as the 
definition of the rate paid by the floating leg (3-month USD LIBOR) and how to generate the payment 
schedule for each leg. 

Given Definition 1, we can now define the QuoteSpecification concept. 

It may trouble the reader to observe that these two definitions are mutually recursive, but this just reflects 
that the border between InstrumentType and QuoteSpecification is essentially arbitrary, to be chosen based 
on practical concerns. The rule of thumb is that an InstrumentType identifies a screen or table of quotes in 
an individual’s ideal market data management system, and a QuoteSpecification identifies a single entry on 
that screen. 

On a practical note concerning the reporting of exposure, it is useful to be able to represent both 
InstrumentTypes and QuoteSpecifications as strings. We find it very useful to define two levels at which 
sorting and classification can be performed within such reports by forming a two-component string 
representation of an InstrumentType, called a marketdata_tag (or tag for short). On a practical note, these 
tags are readily used as keys in maps. A map of tags to collections of instruments, where each instrument 
is the triplet of an InstrumentType, QuoteSpecification and a quote, forms a set of market data in F3. Fig. 1 
illustrates this structure.

It can be defined more rigorously however as follows. 

Definition 1. InstrumentType concept  
A mapping from 

1. a QuoteSpecification,  
2. a quote date,  
3. a notional amount  
4. and a trade direction 

to a Product. 

Definition 2. QuoteSpecification concept  
The information required to uniquely identify one instrument among instruments of a common 
InstrumentType. 

3.1 
Market Data
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Fig. 1. The structure of market data. A market data set comprises several elements, each identified by  
a tag. An element is a collection of instruments and each instrument comprises an instrument type,  
a quote specification and a quote. The remaining information required to form a real trade is  
a notional amount, trade date and trade direction (pay or receive, for example)

We have seen in Subsec. 3.1 (Page 6) how the risk factors to which our portfolio may be exposed are 
structured. In light of this structure, we can now tackle the problem of how to store and report exposure. 
We need an association of the numerical value  with the quote  (again just a number) and its 
corresponding QuoteSpecification and InstrumentType. 

Conceptually, the structure we need is defined as follows. 

3.2 
Storing and 
Reporting Exposure 
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Although this mapping is the fundamental form that exposure information takes, in practice it can be more 
convenient to work with market data tags and vectors of values, illustrated schematically as follows. 

 

The above code shows a toy implementation of the ExposureTarget concept. In practice, both tag_t 
and exposure_values_t would be classes, in order to implement an appropriate comparison predicate, 
pretty-printing and other operations such as hash code calculations to support a hash-map, instead 
of a standard map, to optimize performance. While Definition 3 is phrased in terms of the salient 
concepts of InstrumentType and QuoteSpecification, the exposures_t type works with a tag as a proxy 
for the InstrumentType and a numerical index (into the exposure_values_t vector) as a proxy for the 
QuoteSpecification. This works well in practice because it is only when generating a final report for the user 
that we need the full set of information, which can always be extracted from the Model. 

To populate an ExposureTarget, we need another concept, which we term LeafExposure, which accumulates 
a value into one of the elements of the vector associated with a given tag. If s_i is an instance of 
LeafExposure whose internal state consists of a tag and the value i, then we seek behaviour along the 
following lines. 

 
This is not quite what happens in practice in F3’s Universal Algorithmic Differentiation™, as we shall see in 
Subsec. 3.4 (Page 13), but serves to illustrate the general idea for now. For this reason, we defer discussion 
of any formal definition of LeafExposure until Subsec. 3.4 (Page 13), where we find that it is a specific 
example of a more general concept.

Given an ExposureTarget populated with the exposure of a portfolio, a natural next step is to form a report 
of its content to the user. Suppose  takes the value USD 523000 for our portfolio, the tag represents a 
vanilla LIBOR swap InstrumentType and that i corresponds to a QuoteSpecification encoding the idea of “a 
maturity of five years”. A suitable report would then appear as follows. 

Definition 3. ExposureTarget concept 
A mapping from 

1. an InstrumentType  
2. and a QuoteSpecification

to a numerical value. 

typedef std::pair< std::string, std::string > tag_t;
typedef std::vector< double > exposure_values_t;
typedef std::map< tag_t, exposure_values_t > exposures_t;

exposures_t target; // empty ExposureTarget
double Delta_i = getTheCorrectExposureValueSomeHow( some, arguments );  
// details to follow  
s_i.storeExposure( Delta_i, target );
// target[s_i.tag()][i] is now Delta_i;

3.2 
Storing and 
Reporting  
Exposure
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Market
Data
Name

Market
Data Type

Quote
Specification

Quote Currency Exposure Exposure Type  

USD SwapRates 5y 1.081% USD 523000.00 <RawValueExposure>

The first four columns describe the quote to which exposure has been computed and the remaining columns 
display the exposure to that quote. The column headings are described as follows: 

Market Data Name First string which forms the tag for this market data element

Market Data Type Second string which forms the tag for this market data element

Quote Specification String representation of the information identifying this instrument within
the element, such as its maturity

Quote The quote to which exposure is reported

Currency The currency of the exposure

Exposure The value of the exposure, 

Exposure Type A string which indicates the type of exposure being reported

In the example above the exposure type is <RawValueExposure>, indicating that the given value is the 
raw partial derivative  as opposed to some other way of presenting the information, such as a hedging 
notional (see Fig. 11). 

While a report of a portfolio’s exposure to market quotes is of prime interest in any production 
setting, during the development, testing and debugging of valuation functionality it is often preferable 
to see exposure to model parameters, separate from any subsequent calculation concerning the 
relationship between calibrated model parameters and market quotes. While the above discussion was 
presented in terms of market quotes, we can easily calculate and report model parameter exposure, by 
simply generalizing the concept of “market data” in this context. When calculating exposure to the inputs 
of a valuation, “market data” is effectively defined as the inputs to which exposure should be reported, 
whether they have come from the financial markets or not. There is no constraint on where the inputs of 
a calculation have come from, only that they are labeled such that each occupies a separate location in an 
ExposureTarget. 

Having described the structure of an exposure report and having seen how it can be populated with 
exposure values, we are now finished apart from the minor detail of the implementation of the function 

getTheCorrectExposureValueSomeHow( some, arguments );

from Subsec. 3.2 (Page 9). 

3.3 
The Mathematics  
of Exposure 
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We shall see that there is a single unifying operation that encompasses all exposure calculations, including 
the final accumulation of weight into the ExposureTarget described in Subsec. 3.2 (Page 9). 

In order to illustrate how this can be approached, consider the following example portfolio U consisting of 
two trades A and B, weighted by their notionals  and , where A is a cross-currency swap between the 
numeraire currency of US dollars and the asset currency of Sterling, and B is a Sterling equity forward. If  
and  are the (unweighted) US dollar values of the trades A and B, then the portfolio’s value can be  
written as 

While the techniques we develop in this section are general and apply to any portfolio, for the sake of 
illustration we can take advantage of our knowledge of this small and relatively simple portfolio to see how 
the calculation can be broken down. In Subsec. 3.2 (Page 9) we examined the arbitrary portfolio V, exposed 
to the  quotes , without grouping those quotes into InstrumentTypes (see Definition 
1). For the portfolio U, we can assume that the cross-currency swap A is exposed to three InstrumentTypes: 
 

 • USD vanilla interest rates swaps. Denote quotes of this type by  , 

 • GBP vanilla interest rate swaps. Denote quotes of this type by  and 

 • GBP-USD FX spot. Denote this quote by .

The value of the cross-currency swap is therefore a function of these three variables, . 
Similarly, we know that the Sterling value  of the Sterling equity forward depends on:  

 • the GBP vanilla rates market  and 

 • equity-related factors such as the spot equity price and assumptions about future dividend 
payments, which we denote . 

This means that , the (unweighted) US dollar value of this Sterling equity forward, , can be expressed as

   
where  is the Sterling worth of the equity forward. Listing these dependencies explicitly, Eq. (3) 
becomes 
                 

Our eventual goal is to evaluate the exposure of U to the relevant market quotes:

 

where we have adopted the short-hand notation 

3.3 
The Mathematics  
of Exposure 
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to express the sums concisely. Given that ,  ,  and  are market quotes, once the corresponding weight 
factors such as  have been calculated, they can be stored and reported by means of the LeafExposure 
concept as described in Subsec. 3.2 (Page 9). However, because we know the functional form Eq. (3) and 
Eq. (4) of the portfolio U, we can begin to calculate these weight factors explicitly. In doing so, we will be 
able to identify the common pattern that all exposure calculations take and provide a formal definition in 
Subsec. 3.4 (Page 13). 

The functional relationships we have seen in our portfolio so far are a linear function  
 and a product function . In terms of these functions, our portfolio’s 

value can be expressed as

  
Applying the chain rule of differential calculus to these functions yields the following expressions

 

 
 
which, when applied to Eq. (7) and Eq. (8) give 

 
 
This application of the chain rule is a recursive process. We could now apply our knowledge of the functional 
relationships present within A and C to repeat this process over and over again until we arrive at the 
end-points defined by LeafExposures which then store the result ready for reporting to the user. However, 
for our current purposes of identifying the common structure that pervades these calculations, we have 
already gone far enough in this direction. Before discussing this common structure explicitly in Subsec. 3.4 
(Page 13), we consolidate our process so far by expressing the exposure of U in terms of market quotes. The 
exposure of   and  to the market is given by 

 
 
which, when substituted into Eq. (9) and Eq. (10), gives an updated version of Eq. (5),

3.3 
The Mathematics  
of Exposure 
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In the preceding section (Subsec. 3.3 (Page 10)) we explored the mathematical structure of exposure using 
the example of a portfolio U whose exposure was divided into four distinct categories, . We 
saw how the rules of elementary differential calculus allow us to calculate the values (  ) that are stored 
in an ExposureTarget by considering two functional relationships present within U. Although we explicitly 
described the application of the chain rule for a linear function  and a product function , we 
also identified how subsequent functional relationships would be handled. 

In doing so, at all times, we were working with equations of the same fundamental form as our original 
equation Eq. (2). This is the first key observation that makes it possible to handle exposure generically. 
It means that there is an operation, which we term exposure projection, that is common to all such 
calculations. In addition, in all of these formulae, the differential operator  appears on both the left and 
right hand sides of the equations. There is clearly a recursive structure present, which means that the 
exposure projection operation will be performed as part of another (calling) exposure projection. 

As a brief aside, the reason for using the term “projection” is the close analogy between exposure and a 
basis spanning a vector space. Given an orthonormal vector basis in  dimensions , we 
find the components  of an arbitrary vector  by projecting it onto the basis:  

Given a function of  variables , we can regard the  inputs as a basis for its 
exposure:  

The “component” of , the full exposure of  in the  “direction” is the partial 
derivative with respect to the corresponding variable, . 

The second key observation we make is that exposure to a given market factor, such as the spot FX  
rate , is composed of a simple sum of terms. This remains true even for nonlinear functions such as 

 due to the first-order nature of the calculation - we focus on small changes in  and neglect higher-
order terms, deferring their treatment to the general topic of scenario analysis. It does not make sense 
to construct this sum of terms explicitly, however, because portfolios are not organized according to the 
market data required to calibrate the models used for their valuation. Instead, it is best to regard the sum 
as an accumulation, with contributions from many different parts of a calculation, into the relevant part of 
some target object, in our case an ExposureTarget. Therefore, the exposure projection operation must take a 
reference to the target as one of its inputs. 

3.4 
Exposure Projection 
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The third key observation we make concerns the nature of the terms that are accumulated into the 
ExposureTarget. They consist of successive multiplicative factors, again because first-order exposure is 
fundamentally a linear operation. A new factor appears whenever a functional operation such as  is 
composed with another such as  , as in Eq. (7) and Eq. (8). In other words, each time we encounter 
the derivative operation  applied to a function , we obtain the same operation, but applied to its 
arguments, and weighted by a numerical factor that is composed of the partial derivatives of  with respect 
to its arguments. In fact, if  itself is the argument of another function , then  will be weighted by . 
We see therefore that a weight factor must be present in the exposure projection operation. 

Given the above considerations, the exposure projection operation can be captured by the following 
interface: 

struct ExposureProjector
{
virtual void projectExposure( double weight,

exposures_t& target ) const = 0;
};

Each time we write an equation in terms of differentials as in Eq. (2), we can identify each operation with a 
call of some implementation of this interface. For example, the act of initiating the exposure calculation for 

 would be encoded as

 
Stepping into this function, we would see  

 

 

 which is the implementation of the binary linear sum operation of Eq. (9). The implementation of the 
first exposure projection operation (on A) is not shown here because we did not explore the form that A’s 
dependence on its arguments ,  and  takes. However, Eq. (10) represents the product function , 
which allows us to show the implementation of  
B.projectExposure( weight * lambdaB, target );

 
virtual void projectExposure( double weight,

{
// weight is now 1.0 * lambdaB
C.projectExposure( weight * phi, // 1.0 * lambdaB * phi,

target );
phi.projectExposure( weight * C, // 1.0 * lambdaB * C,

target );

}target );

}

exposures_t& target ) const // member function of B’s

exposures_t target;

U.projectExposure( 1.0, target );

// lambdaA * dA
A.projectExposure( weight * lambdaA, // weight is 1.0

target );
// lambdaB * dB
B.projectExposure( weight * lambdaB, 

target );

3.4 
Exposure  
Projection
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As with A, we did not pursue the form that C’s dependence on its arguments takes and so we do not 
show any implementation for it. However, phi is not a function of any other variables - it represents an 
end-point in this set of projectExposure calls and as such, it encodes the LeafExposure concept 
of Subsec. 3.2 (Page 9). In fact, the above code reveals that there is no need for a separate LeafExposure 
operation (called storeExposure in Subsec. 3.2 (Page 9)) at all - it is just yet another example of the 
projectExposure interface at work. Its implementation in the case of LeafExposures will make no 
further projectExposure calls. Rather, it will, given knowledge of its tag and numerical index, insert a 
value into the appropriate location within the target. 

We can now define the central concept that underpins EP: 

 
We see that LeafExposure is a specific type of Exposure, one which populates an ExposureTarget. 

The code phi.projectExposure( weight * C, // 1.0 * lambdaB * C, target 
); is, in fact, the first point in our example at which the exposure target is populated with any values. The 
value accumulated is readily identified with the term  in Eq. (11). When an exposure projection is 
performed on a composite object which in turn depends on other arguments, (a reference to) the target is 
simply passed down the execution stack. But whenever an end-point in this chain of calculation is reached, 
the target accumulates a value. In this way, the appropriate values are accumulated in the appropriate 
locations in the exposure target, in this case given by Eq. (11). 

 
We can use the simple example from Subsec. 3.3 (Page 10) to illustrate the nature of the storage 
requirements of an exposure projection. The following pseudo-code represents the set of exposure 
projections examined in Subsec. 3.4 (Page 13), with the interface projectExposure( weight, 
target )abbreviated to pE( weight ). In other words, projectExposure has been shortened 
to pE and the ExposureTarget has been dropped from the notation (although it must remain within the 
scope of each function call), for brevity.  

 

Definition 4. Exposure concept  
An object with the ability to perform an exposure projection. 

U.pE( w ) // overall weight w (= 1.0 above)
|-- A.pE( w * lambdaA ) // add w onto stack
|   |-- ... // add lambdaA (etc, according to internal structure of A) onto stack
|-- B.pE( w * lambdaB ) // remove everything but w
    |-- phi.pE( w * lambdaB * C ) // add lambdaB
    |   |-- target[phi] += w * lambdaB * C // add C, so w, lambdaB and C on stack.
    |-- C.pE( w * lambdaB * phi )
        |-- ... // add phi (etc, according to internal structure of C) onto stack

3.5 
Storage Model 
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As each exposure projection function is called, a new frame is added to the stack. Each new frame stores 
the variables holding the partial derivatives that will be accumulated into the target when the program 
arrives at a leaf in the calculation tree. After that contribution to the total exposure has been accumulated 
(the phi.pE line), the stack is unwound up to the next call (in this case, C.pE). The result is that 
whenever an exposure is accumulated into the target (such as ), only the variables that form the value 
to be accumulated ( ,  and  ) are stored in memory. They are then released before the calculation 
proceeds. This efficient storage of internal variables is a natural consequence of traversing a tree of 
exposure projection calls, illustrated in the present context in Fig. 2. 

Fig. 2.  An illustration of the calculation tree implicit in an exposure projection for the simple example 
described in this section. 

We note in passing that, as long as code authors do not take special pains to avoid stack storage, exposure 
projection is threadsafe up to the shared ExposureTarget. If one target is used per thread then thread-safety 
is recovered, if the targets are consolidated after each thread has terminated. 

3.5 
Storage Model
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Having explored the structure at the heart of exposure calculation, what remains is essentially the 
application of the ideas developed so far. This is not to dismiss such an endeavour, however. Indeed, one 
of the unique differentiators of F3’s Universal Algorithmic Differentiation™ (UAD) is the completeness of its 
implementation of analytic exposure. 

A derivative’s valuation can be divided into calculations corresponding to two components (see Goyder 
and Gibbs (2012)). The first is the Product, where the calculations performed are those encoding the rights 
and obligations specified in the legal terms of the deal (we can regard portfolios, for our purposes here, as 
trades with a simple nominal term sheet that aggregates the rights and obligations of it’s constituents). 
The second is the Model, where the underlyings referenced by the derivative are modeled. In Subsec. 3.3 
(Page 10), we examined part of the Product, but did not explore it very far. Except for the FX rate , we 
certainly did not move into any part of the Model. In this section we conduct a more thorough examination 
of the objects necessary to support the full analytic calculation of exposure for any trade. We begin at 
the opposite end of the calculation to Product, move through the Model (deferring a full discussion of 
calibration until Sec. 5 (Page 21)) and make contact with Products once again in Subsec. 4.3 (Page 20). 

At the core of analytic exposure calculations is the pairing of a numerical value  and its exposure 
. The structure of  is trivial - just a real number - and  is an Exposure. The fundamental nature of this 
association prompts an explicit name for this type of object. 

 
Given a collection of Parameters, we can form new parameters by performing functional operations on 
them. For example, consider a Parameter  formed from the ratio of two other Parameters  and . 
Elementary differential calculus gives us the exposure projection for , as follows.  

As we saw in Subsec. 3.4 (Page 13), the implementation of the exposure projection operation for  would 
consist of two calls to projectExposure, one on the Exposure for  with a weight of  and the 
other on the Exposure for  with a weight of , where have dropped the overall weight factor 
supplied to the exposure projection for . 

Definition 5. Parameter concept 
A number, including its exposure - the pairing of a numerical value with its corresponding Exposure. 

4.0 
The Valuation Stack 

4.1 
Parameters 
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This structure lends itself to the overloading of operators acting on Parameter instances which yields 
source code that looks very similar to the mathematics that it encodes and hence would provide a high 
degree of readability in the resulting program. However, it is important to avoid an overemphasis on 
calculations implemented in terms of Parameters, because they represent the finest possible choice of 
granularity for exposure projections. As explained at the end of Subsec. 3.4 (Page 13), the contribution of 
each level of function composition to the final value accumulated into the part of an ExposureTarget for a 
given market quote is stored as a separate entry in the call stack of the program. While in many scenarios 
working exclusively in terms of Parameters may be adequate, in general it places too tight a constraint on 
the ways in which exposure calculations may be optimized. 

By choosing carefully where exposure projection is implemented, from the full range of objects that form 
part of an entire valuation, we can select a level of granularity that is appropriate to the given application. 
This yields optimized code both at runtime and during the development of the code itself. In fact, in F3, 
in order to encourage an explicit choice of such granularity, we have deliberately avoided the temptation 
of writing everything out in terms of Parameters by not overloading any of its arithmetic operators and 
working in terms of a set of factory functions to perform common operations such as the ratio described 
above. 

A commonly used factory function is one that forms a Parameter by binding a function to a specific 
evaluation point. We consider such functions explicitly in Subsec. 4.2 (Page 18). 

Functional relationships are crucial to valuation. Common examples are:  

1. Real-valued functions of a single real variable (that is one-dimensional functions), for example today’s 
discount curve .

2. Real-valued functions of two real variables, for example, a volatility surface  where  is the 
strike of an option and  the expiry.

3. Real-valued functions of three real variables, for example an interest rate futures convexity adjustment 
 where  is the expected value of the forward rate,  is the valuation time and  is the 

futures expiry time.

4. Complex-valued functions of a single complex variable, for example the characteristic function of a 
price process.

5. Functions of no arguments. We have met these already in the form of Parameters. 

The key aspect of such functional relationships is that, while dependence on their arguments is explicit, in 
general they also have an implicit dependence on Parameters. Take, for example, the idealized discount 
curve

4.2 
Function Exposure 
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We are making an explicit choice to regard  as a one-dimensional function, when we could instead 
work with the surface . We do this because the time-dependence is always there in a discount 
curve, whereas the dependence on  is only there if we choose the simple form of Eq. (12). We could 
have modeled the discount curve differently, such as via log-linear interpolation (equivalent to piecewise 
exponential decay, or constant forward rates): 

 
where  identifies the interval for which . In objects representing these functions therefore, 
parameters such as  form arguments to the constructor, while  is supplied as an argument to its methods 
or member functions. 

This distinction between the arguments of a function and a function’s Parameters must manifest itself 
in the calculation of exposure. We prefer a very clear manifestation whereby exposure to arguments is 
handled in a separate part of the interface of a function object and exposure projection is augmented with 
the value of the argument at which exposure is to be projected. For example, here is some pseudo-code 
showing part of the exposure projection for the log-linear function of Eq. (13): 

The pseudo-code above is for the case of a one-dimensional real function. Given the wide variety of forms 
that functional relationships can take, it is useful to parametrize the exposure projection interface so it 
can work for any form of argument and return value. The templates mechanism in C++ provides a suitable 
mechanism for such a parametrization, as do Java’s generics and similar facilities in other languages. 

Parameters and functions in their various shapes form some of the basic building blocks of valuation. Their 
canonical application is in the encoding of the model parameters used to calculate derivatives’ value and 
exposure, found (usually) by means of a calibration procedure. The management of relationships between 
Parameters (see Gibbs and Goyder (2012)) and their calibration by a Model for efficiency and consistency is 
described in Goyder and Gibbs (2012) and Gibbs and Goyder (2012) so we will not cover it here. 

In F3, the object that performs the act of valuation, and therefore the main user of functions, is called an 
Engine. Its role will be described in detail in Subsec. 4.3 (Page 20). 

void projectExposure( double weight,
                      double t, // need this argument for functions
                      exposures_t& target ) const  
        // member function of a log-linear function class
{
  // extract the values for the interval for which s_i < t < s_{i+1}
  double s_i, s_i_plus_1, d_i, d_i_plus_1 = getValuesForThisInterval( t );
  // pre-calculate the exponent
  double p = ( t - s_i ) / ( s_i_plus_i - s_i );

  // project exposure to d_i_minus_1 first. Extract the corresponding Parameter
  Parameter d_i_plus_1_param = getTheParameter( t );
  // then we can project
  d_i_plus_1_param.projectExposure( weight * p * std::pow( d_i / d_i_plus_1, p),
                                    target );
  // the rest follow similarly...
}

4.2 
Function  
Exposure
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The act of valuation in F3 is performed by calling the function ValueProduct, whose arguments are 

1. a Model providing model parameters, 

2. a Product encoding the term sheet, 

3. a ValSpec specifying the valuation approach 

4. and a collection of valuation requests specifying the desired output. 

The above information is sufficient to identify the calculation required to value the Product, in the context of 
the given Model and under the given ValSpec. This calculation is contained within and managed by an object 
called an Engine, which can be defined as follows: 

 

 
Note that there is nothing in the above definition to constrain a valuation to a single currency. To 
accommodate multi-currency trades, the value and exposure outputs from an engine take the form of 
a map from currency to value and a map from currency to an ExposureTarget. That said, if the ValSpec 
specifies a currency in which value and exposure may be reported, then such single currency reports may 
be requested by means of appropriate requests in the fourth argument of ValueProduct. 

The Model, when combined with the ValSpec, produces an object which is capable of emitting the 
appropriate valuation Engine for any given Product. As such, we term it EngineSource and define it as 
follows. 

 
In practice, Engines divide into two forms, for the valuation of Products and Indices (an Index represents a 
financial observable and is described in detail in Goyder and Gibbs (2012)). Consider the simple example of 
a single cash flow of LIBOR paid at time  with notional  and accrual fraction  whose present value in 
closed-form is given by

Definition 6. Engine concept 
A provider of, as a minimum, the value and first-order exposure of a Product, in the context of a given 
Model and under a given ValSpec. 

Definition 7. EngineSource concept 
A mapping from a Product to the appropriate valuation Engine. 

4.3 
Engine Exposure 
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where is given by Eq. (13) and the curve  (evaluated at time , as appropriate for a payment at ) 
gives the expected value of LIBOR as 

for some spread curve , where  and  denote the start and end of the corresponding borrowing 
period. In terms of the valuation stack described in this section, this LIBOR payment is organized as follows: 
 

 • A ProductEngine holds
 •  and  as floating point numbers,
 • the 1-d function  and
 • a closed-form IndexEngine to calculate LIBOR, which in turn holds

 • the 1-d function  and (after having checked the observation time to determine 
whether a fixing might be required) simply evaluates it. The  function holds two 
other functions: 

 • , formed by interpolating a set of Parameters  and 

 • , also formed via interpolation of Parameters. 

While the example of a single flow of LIBOR is very simple, this hierarchy of Parameters nested inside 
functions inside IndexEngines and ProductEngines applies to every Product, regardless of its complexity. 
Engines, functions and Parameters all implement the Exposure interface, which means exposure can always 
be projected down this valuation stack onto the Parameters. 

Now, in the Libor cash flow example of Eq. (14), the Parameters are LeafExposures, which means that 
we will report exposure to those Parameters, that is, they form leaves in the calculation tree. Reporting 
exposure to model parameters is common during the development, testing and debugging of valuation 
functionality, but in a production deployment such model parameters are typically found by means of a 
calibration procedure, and so exposure would be projected through them onto market quotes. It is to this 
task - evaluating the exposure of calibrated model parameters to market quotes - that we turn next. 

 
 
 
 

In Sec. 4 (Page 17) we examined the components that comprise an analytic exposure calculation for a 
generic derivative valuation and saw that such calculations are initiated at the level of an Engine which 
encodes the trade’s payoff and which is implemented in terms of functions and Parameters (which can be 
regarded as zero-dimensional functions).

5.0 
Calibration 
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Therefore exposure is projected through Engines into functions and, eventually, into Parameters such as the 
interpolation points of the discount curve . 

In this section, we tackle the problem of projecting exposure through model parameters onto market data. 
Model parameters are implied from market data by means of some form of calibration, in which a model’s 
parameters are adjusted according to some algorithm in order to provide a “good enough” match with 
market prices for some quoted instruments, when the instruments’ price is calculated with the model. In 
fact, as described in Gibbs and Goyder (2012), this is an oversimplification. In general, calibration is the act 
of comparing two different approaches to valuing the same collection of instruments, and it happens that 
one approach, called the SourceValSpec, is often either trivial (for example, value to par) or matches an 
established recipe (for example, options in the Black model). The other approach (TargetValSpec) is based on 
the model to be calibrated. 

Just as calibration is an inverse problem, so is the projection of exposure through a calibration. While the 
details are specific to the calibration algorithm and metric used to compare with market prices, the general 
approach benefits greatly from the linear nature of first-order exposure calculations; while inverting a 
pricing calculation is in general intractable and requires a numerical approach, the linear nature of the 
corresponding delta calculation ensures that we can perform an analytical calculation. 

One common calibration algorithm is a root-search such as the Newton-Raphson method. All such methods 
are based on the following metric: 

where 

and where 

 •  denotes the value of the  instrument under the SourceValSpec 

 •  denotes the value of the  instrument under the TargetValSpec 

 •  labels the collection of LeafExposures to which only the source valuation is exposed 

 •  labels the collection of LeafExposures to which both valuations are exposed 

 •  labels the collection of LeafExposures to which only the target valuation is exposed 

 •  labels the collection of  parameters being found by calibration

5.1 
Root Searches 
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All -dimensional root-finding procedures using  as a metric proceed by finding  the value of  
that results in  vanishing (to within some suitable tolerance). This is equivalent to the  conditions 

for . Our aim is to find the form of the target parameters’ exposure  implied by Eq. (18). To 
proceed, we take the total derivative 

Expanding the  such condition using the chain rule, we obtain 

 
where we have used the compact sum notation from Eq. (6). The set of these equations for  
forms a determined linear system which we can solve for  with standard techniques from linear algebra. 

To illustrate, let us consider one of the simplest possible examples, once the canonical bootstrapping 
problem but now largely of historical interest: constructing a discount curve from a series of swap quotes. 
To simplify even further, let us ignore any cash deposit or futures quotes and leap straight to the 1 year 
point  implied by a quote  for a 1-year vanilla interest rate swap. Given the interpolated discount curve 
of Eq. (13), the value  of the 1-year swap for unit notional is given by 

where the 1-year annuity  is given by 

 
for a set of payment dates  and associated accrual fractions , and the floating leg 

 is given by 

 
 
where the LIBOR rate  is observed at time  for payment at . Let this rate be modeled as 

 
where  and  mark the start and end of the rate’s period and  is a fixed and known (or assumed) 
spread. This is a special case of Eq. (15), with a constant spread, which we write as  (dropping the 
-dependence from the notation). 

5.1 
Root Searches
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The techniques described in this section do not require such simplifying assumptions - all of the more 
complex bootstraps described in Gibbs and Goyder (2012) can be treated with the same approach - but 
for the purpose of illustration assuming a constant spread affords brevity. 

Our discount curve will be consistent with this market quote if this swap prices to par. In the language of Eq. 
(17), we require that the SourceValSpec sets the value of every instrument to zero, and the target valuation 
is as described above in Eq. (21). The parameter sets ,  are empty,  consists of the two numbers  and 

 and the vector  has just one element, . Eq. (20) becomes 

 
whose solution is 

 
We can therefore construct the Parameter  and proceed to the second root-find calculation in the 
bootstrap, based on the 2-year swap quote . By analogy with the above calculation, we can write down 
the exposure of the second discount curve point  as 

 
 
in which we note the presence of . Such a recursive structure, with each newly determined curve point 
depending on points obtained previously, is to be expected in a bootstrap calculation. 

In Subsec. 3.4 (Page 13) we saw that every appearance of a differential such as  in our equations 
is encoded by an implementation of the Exposure concept in software. Such implementations may be 
close representations of the above mathematical forms - for example,  may calculate two weights 
and perform two subsequent exposure projections as in Eq. (23) - or we may choose some alternative 
implementation if appropriate. 

This simple example reveals a circumstance in which an alternative implementation is in fact appropriate. 
The recursive structure of bootstrap calculations means that whenever the target curve is involved in 
any subsequent exposure projection, all of the projections like those given by Eq. (23) and Eq. (24) are 
performed as long as the target curve is evaluated at a time later than 2 years. To avoid this inefficiency, 
we can optimize the calculation by actually performing the exposure projection for  immediately after 
the root-find for that curve point has completed. In doing so, we cache the factors multiplying  and 

 in an ExposureTarget and implement the Exposure interface by storing the target and accumulating 
any subsequent weights in the relevant parts of the target. In other words, instead of carrying around a 
calculation tree, we flatten the exposure onto its leaves. This optimization is described in more detail in 
Subsec. 7.1 (Page 34).

5.1 
Root Searches
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There is one further subtlety in even this simple example. We have glossed over a distinction among 
the parameters to which the value  of the swap is exposed. While  and  are model 
parameters,  is not. It is part of the term sheet for the quoted instrument, which means that it is not 
known to the EngineSource constructed from the Model and TargetValSpec - it instead comes from the 
Product. Engines do not typically project exposure onto quantities in the Product, because they are fixed for 
a given trade. Any calculation that requires terms like  must insert them explicitly and each engine which 
prices an instrument whose quote is intrinsic to the trade in this manner must provide access to the 
relevant exposure factor -  
in this case  . 

In contrast, other types of instrument are quoted by supplying their price directly. Options are notable 
in this respect, even though the price is encoded as an implied volatility. We term the quotes for such 
instruments extrinsic because the quote is not written anywhere on the term sheet - the quote is 
not specified as part of the trade, but is simply the value of the trade itself. Each type of instrument 
participating in a calibration that supports a full analytic treatment of first-order exposure must 
advertise whether it is quoted intrinsically or extrinsically. A good rule of thumb is that instruments for 
“curve-building”, whether in the vanilla rates, cross-currency or credit markets, are quoted intrinsically 
and are used with a par SourceValSpec and the volatility calibrations applied to dynamic models use 
a SourceValSpec chosen by convention, such as the Black formula, and are based on instruments quoted 
extrinsically. 

 
 
While a root-finding approach to calibration is typically found in building curves, for the calibration of 
models for the dynamics of a market observable a minimization is more common. This is because the 
systems of equations appearing such calculations are usually over-determined. Rather than pricing each 
calibration instrument precisely to market (as in Eq. (16)), such calibrations minimize some metric that 
measures the overall difference between model predictions and reality. The most common metric is that 
induced by assuming a distribution of errors that maximizes their entropy (Jaynes (2003)): 

 
where the parameter sets , ,  and  are known and the elements of the set  weight the 
contribution of each instrument to the sum. 

At the point  in parameter space that minimizes the value of this metric, we have the conditions 

 
for  where  is the number of parameters being calibrated. 

5.2 
Gradient Descent  
and Global Optimizers 



Page 26 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As before in Eq. (19), we can take the total derivative of each side of this equation to obtain 

 
While somewhat voluminous, the terms in this equation, as ever with exposure calculations by their very 
nature, are linear in the exposures themselves. Assuming that the functional forms involved are sufficiently 
well-behaved to allow the order of differentials to be interchanged, the factor of  in the first term 
expands into 

Given Eq. (25), we can expand  and  as 

and 

using the compact sum notation of Eq. (6). Given Eq. (29), we can apply the same procedure as for Eq. (28) in 
order to express the factor of  in the final term of Eq. (27) in terms of a projection onto  and the 
other parameters in the problem. 

Thus, by repeating the above for each , we again have, in principle at least, a linear 
system which can be solved for . However, it is one that contains both first and second derivatives 
of the values of the calibration instruments which must be computed in order to project exposure 
through calibration algorithms that minimize . Should the ideas covered so far be extended to cover 
second-order derivatives? A straightforward generalization does exist, by just taking the second term 
in the Taylor expansion for a portfolio’s value. However, the amount of work required to form second 
order derivatives scales as the square of the number of risk factors, which renders such an act impractical 
in general. 

A more practical approach is suggested by Eq. (28), where we interchanged the order of the 
total derivative of  and the partial derivative with respect to . Given the ability to calculate 

, as afforded by the exposure projection ideas described so far, we 
can apply  finite-difference calculations, varying  by a small amount  in each one, recalculating 

 and evaluating the difference between the two resulting 
ExposureTargets:

5.2 
Gradient  
Descent and  
Global Optimizers
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In fact, given this ExposureTarget-based finite-difference approach, we can construct a far neater 
algorithm by going back to the original condition Eq. (26) and interchanging the order of derivatives at 
that stage. Instead of taking the total derivative of the  equations Eq. (26) for , we can 
evaluate, by finite difference, the derivative with respect to  of the projected exposure of . In other 
words, evaluate  twice at two nearby values of , storing the results in an ExposureTarget each time, 
and calculate the difference between the two. Note that we are applying the finite difference technique 
to ExposureTargets, thereby forming second-order derivatives. The first-order exposure they contain is still 
calculated by means of exposure projection. 

From this high vantage point of differentiating , it is useful to group all the known parameters under a 
single symbol , where the  element  may represent an element from , ,  or  depending on the 
value of , which ranges from 1 to , the sum of the sizes of , ,  and . Using this notation, we can 
express the total derivative of  as 

 
At the minimum , the partial derivative of  with respect to  vanishes for each , giving 

 
Defining the  by  matrix  by 

 
and the  by  matrix  by 

 
we have the following linear system: 

where we assume any repeated indices are summed over the relevant range. The solution is 

which allows the Parameter  to be constructed for each . In passing we note that that the 
Jacobian of any calibration based on a  metric is

 
 
although in exposure projection it is never constructed explicitly as a matrix. Rather,  
it is implicit in the exposure projector Eq. (30).

5.2 
Gradient  
Descent and  
Global Optimizers
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The ideas developed so far in this article provide a concrete solution to the problem of evaluating partial 
derivatives of complicated functional relationships by decomposing them into simple components and using 
the chain rule to assemble the pieces. A central assumption that underpins the entire development is that 
the relevant functionality relationships are differentiable. However, many functional relationships found 
within financial derivative contracts are not. 

Even the canonical derivative - a European option on some stock  struck at  - has a value at expiry of 

which is not differentiable at the point  because its derivative with respect to  suffers a 
discontinuity, jumping from 0 to 1. We shall see shortly that any payoff that is conditional on some event 
can be expressed using a step (Heaviside), function, which has no finite derivative at the step. We shall also 
see that any payoff that involves sorting, such as mountain range options popular particularly in the early 
90’s, introduces similar non-differentiability. How can we apply differential calculus to functions that are 
not differentiable? It is this question that we address next. 

The answer to this question is no different from the answer to the wider question of how singularities 
and infinite sets are treated in any practical implementation, in any modeling context from black holes to 
probability theory. We replace the singular or infinite system with a finite, parametrized one, such that it 
approaches the true system as a limiting case. Applied to derivative payoffs, this amounts to replacing all 
non-differentiable functions such as those described above with differentiable ones that tend to the original 
functions in a controllable limit. 

As an example, take the function  implicit in the European option payoff Eq. (31) and 
replace it with 

The behaviour of this function is shown in Fig. 3.

6.0 
Discontinuities 
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Fig. 3. Smoothed, therefore differentiable, maximum function that approaches a European option payoff in 
the limit of vanishing smoothing zone 

 
In the small region of size  around  (or  ),  is a quadratic that matches both the value 
and all derivatives of  at the region’s boundaries . Inside the smoothing region, the values of 

 and  do not quite match, but  remains differentiable and the discrepancy in value can be 
made to be arbitrarily small by adjusting the parameter . In particular, we have that 

Given the techniques described in this article, there is nothing to stop us treating the parameter controlling 
this parametrization as just another variable to which exposure should be calculated. Outside the region 

, there is no exposure, but inside, we have

6.0 
Discontinuities
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Having the exposure  to available in our ExposureTarget is of immense value, because we can assess 
immediately the extent to which the results of our valuation depend on the modeling assumption encoded 
via Eq. (32). If the  exposure is negligible, then the valuation is insensitive to the fact that the payoff has 
a kink at  and we can proceed in our application of the techniques described in this article without 
worrying about the non-differentiability present in the problem. 

If, however, we have a non-negligible exposure to , then the valuation is indeed probing the non-
differentiable region and is therefore dependent on the smoothing methodology we have chosen to manage 
that non-differentiability. There is no automatic recipe to follow in such cases, although there are some 
good general guidelines. One is to marginalize over several smoothing methodologies or at least compare 
their results. Another is to perform an extrapolation based on a selection of values of , to estimate 
the result of taking the limit Eq. (33), although this extrapolation introduces further modeling assumptions. 

Regardless of the choice of strategy for dealing with significant  dependence, it is always valuable to 
possess the knowledge that a valuation result is model-dependent, and the degree to which this is so. It is 
far better to understand that a number should be treated carefully, and know how carefully, than it is to use 
the number while ignorant of potentially dangerous consequences of doing so. 

We have shown one manner in which the discontinuity in gradient present in a European option payoff 
can be smoothed. The general approach for other non-differentiable functional forms is more of the same 
- every sharp edge must be smoothed and the true payoff can be approached as a limiting form of the 
replacement. We now give two further examples of this. The first case arises when a condition is present in 
the payoff. Consider, for example, a contract assigning rights or obligations contingent on some observable 

 breaching a barrier during some time interval . The object of interest is the indicator 
function , evaluating to true if the barrier was breached and false if not. If the two outcomes 
resulting from each Boolean value are the payoffs  and , then we write: “if  then  
else “, which is not differentiable. 

To make progress, we first relax the constraint that  is Boolean-valued, replacing it with a real-valued 
function  and interpreting values of 1 (or more) and 0 as true and false respectively. We then form 
the expression

 

which is equivalent to the original conditional “if” expression when  evaluates to 1 or 0. We then 
apply the same approach as before, defining a smooth transition from 0 to 1 for  over a range 
controlled by a parameter, resulting in a differentiable expression and the same modeling considerations 
as above. The same approach covers composite logical conditions by identifying Boolean and with 
multiplication and or with addition. 

While not particularly common, it is possible to write a contract based on the location of elements in an 
ordered list. Mountain range options such as Himalayas that became popular in the early 90’s are perhaps 
the clearest examples of such trades. In order to construct ordered lists, a collection of objects must be 
sorted. More so than with logical conditions, it is far from clear a priori how sorting algorithms might be 
rendered into a differentiable form. One solution to this problem follows from the fact that a sort can 
in fact be expressed as a known number of comparison operations (Batcher (1968)), which in turn can be 
expressed in the same manner as Eq. (34). Thus, sorting becomes a differentiable operation. 

6.0 
Discontinuities
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While the techniques described in this chapter can render a given discontinuous payoff differentiable, it 
is another matter to construct a platform that guarantees that all sharp edges are smoothed. Such an 
endeavour requires both an architecture and a development process that ensures a very high degree of 
modularity and component reuse. As with the ExposureProjector interface (Subsec. 3.4 (Page 13)), it 
is impractical to retrofit a pervasive smoothing capability - any successful implementation must be an initial 
design consideration and achieve the status of a first class architectural feature. 

 
 
 
 
 
 
The concepts of Exposure and ExposureTarget given in Sec. 3 (Page 6), together with the ideas that 
describe how to project exposure through the valuation stack and calibrations (Sec. 4 (Page 17) and Sec. 
5 (Page 21)) allow us to construct analytic calculations for the exposure of any derivative to all the market 
risk factors on which it depends. The chains of projectExposure calls that implement the chain 
rule of differential calculus can be visualized as an acyclic, but recombining graph. For example, consider 
an interest rate swap valued using a discount curve bootstrapped with the toy model of Subsec. 5.1 (Page 
22), but with  quotes . Write its value as 

where  is the (annual) fixed coupon and the annuity  is given by 

 
for a set of payment dates  and associated accrual fractions , and the floating leg  
is given by 

 
where the LIBOR rate  (whose tenor is  ) is given by Eq. (22). Then, the exposure projection can 
be visualized as the tree shown in Fig. 4. Each box displays one of the series of functional relationships 
present in the calculation of the swap’s value, starting with Eq. (35) and descending through to the  
log-linearly interpolated discount curve of Eq. (13). The connecting arrows indicate the calls  
to projectExposure that encode each application of the  operation. Thicker lines denote  
a multiplicity of such calls, while thinner lines denote a single call.

7.0 
Optimizations
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Fig. 4. Calculation tree for the exposure projection of a vanilla LIBOR swap. 

7.0 
Optimizations

Even in Fig. 4 we are confronted by considerable complexity. We have ignored exposure to the set of 
times  and have not drawn the many arrows that capture the exposure of each discount factor to all 
the quotes that mature before the corresponding cash flow. For typical portfolios, such calculations trees 
become vastly larger, and the larger they get, the more expensive it becomes to calculate exposure (though 
the cost of calculating value also increases, with the result that an analytic approach still affords a dramatic 
speed increase over bump-and-grind for any realistic number of quotes). When the calculation tree exhibits 
certain types of structure, it is possible to perform optimizations that leverage that structure. In the 
following sections, we describe a small, indicative set of such optimizations. 
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The first optimization we consider is one we touched on in Subsec. 5.1 (Page 22). The leaves of the 
calculation tree shown in Fig. 4 consist of a set of market quotes,  (and the spread  which we 
ignore in this section for brevity). The discount curve  was implied by this set of quotes via the same 
root-finding calculation, with log-linear interpolation through a set of points , that was described in 
Subsec. 5.1 (Page 22). The associated exposure calculation is given by Eq. (23) and Eq. (24) where in the 
latter equation, we see that  is exposed to changes in both  (directly) and  (via  ). This structure can 
be seen in Fig. 5 for the first five such quotes and discount factor points.

Fig. 5. Graph showing the recursive structure implicit in the dependence of bootstrapped  
discount factor curve points on market quotes. 

7.1 
Flattening
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This is a recursive structure; each discount factor interpolation point  projects exposure onto  and 
onto  for . The cost of projecting exposure onto  is , but in many applications (such as 
valuing a series of cash flows) we require the exposure is projected in a loop from 1 to , adding a further 
power of  to the computational complexity. 

This scaling can be reduced to  (constant time, or  if in a loop over ) by flattening the 
calculation tree, so that it resembles Fig. 6.

Fig. 6. Graph showing the dependence of bootstrapped discount factor curve points on market quotes after 
flattening the tree to remove any recursive structure.

This flattening can be achieved by changing the implementation of ‘s exposure projection operation to 
one which is based on exposure values for the leaves of the tree 

stored in an ExposureTarget, say . When exposure is projected onto a new target , the values 
from  are added into the corresponding locations in . The partial derivatives in Eq. (36) can be 
evaluated by simply asking  to project its exposure onto . If this is done as soon as the exposure 
calculation for  (described in Subsec. 5.1 (Page 22)) is complete, then a full traversal of the recursive tree 
of Fig. 5 is never performed.  

7.1 
Flattening
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The idea of exposure projection described so far is one that avoids the need for explicit allocation of any 
storage for the intermediate Jacobians at each node in the calculation tree. Rather, as described at the end 
of Subsec. 3.4 (Page 13), the required storage is that for only one path from root to leaf as the calculation 
tree is traversed, and is on the program stack. The top-level exposure projection operation starts with an 
empty ExposureTarget, makes a single call to projectExposure and results in a full ExposureTarget 
whose contents can then be queried and reported. 

There are, however, times where this one-branch-at-a-time approach is suboptimal, and instead we want 
to descend only to a given level in the calculation tree, stopping short of the leaves each time. In such 
scenarios we wish to break the chain that connects root to leaf at a key intermediate point or points, and 
then project exposure onto those intermediate points, thereby deferring the full projection until some later 
stage. 

An important example of such a scenario is Monte Carlo simulation, where the value of a derivative is 
approximated by summing over samples from its risk-neutral distribution, generated by passing samples 
of the underlyings from their joint distribution through the contract’s payoff function. First-order exposure 
may be approximated in the same way. For each iteration (path) in the simulation, exposure can projected 
onto an ExposureTarget and by doing so, the average value of each exposure will be accumulated. In 
order to illustrate how a full exposure projection is suboptimal here, consider the toy example of a vanilla 
European call option valued in the Black model, but in a Monte Carlo simulation (with static interest rates). 
Let the present value of the option be

7.2 
Underlying Projectors



Page 36 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

where  is the  of  samples from the risk-neutral price distribution. The payoff for the  sample can 
be written as 

 
where  is the settlement time for expiry at ,  is the discount curve, the option is struck at  and 
state variable  is the value of a time  forward contract on the underlying as seen at . In the Black 
model, we can write the state variable as 

 
in terms of the two model parameters , today’s value of the forward and , its realized volatility 
at  together with , the  sample drawn from a standard normal distribution . Assume that 
we model  by interpolating a collection of quoted volatilities  (corresponding to the strike ) linearly 
in variance: 

 
where  is the  element of , for expiry . Let the static part of our model be constructed as follows. 
Assume some dividend structure incorporating both a continuous dividend model  parametrized 
by a set of quantities  (such as a single dividend rate, or term structure of such rates) and a discrete 
dividend specification based on a set of quantities  (such as the expected absolute or relative dividend 
amounts). Then we can express the funding curve for the underlying as 

without going further into the precise functional form. Our model for the forward curve is therefore 

 
given the underlying’s spot price . Lastly, assume that our discount curve  is that described in 
Subsec. 5.1 (Page 22) and so depends on the quotes . 

As shown in Eq. (37), the value  (and therefore its exposure) calculated on each iteration is a function 
of the volatility model through its parameters  and , and a pseudo- or quasi-random number 
generator. This means that the exposure values that are projected down the valuation stack are different on 
each iteration for the payoff and state-variable modeling layers, but the exposure of the model parameters 
to market data is not (Eq. (38) and Eq. (39)). The model is calibrated before the simulation, with the result 
that the relationship between the model parameters and the input market data remains fixed for all 
iterations. This structure is summarized in Fig. 7 which shows the levels through which exposure must be 
projected in such a valuation, from  at the top through to , , ,  and  at the bottom.

7.2 
Underlying  
Projectors
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Fig. 7. The valuation stack for the toy example of a European call option valued with a Monte Carlo 
simulation, showing the separation between per-iteration quantities and those that are constant 
across iterations. This section describes the capability to split the total exposure projection along the 
horizontal boundary shown by dashed line, delaying the full projection until later. 

 
The computational expense of projecting exposure through a calibration is a function of the complexity of 
the functional relationship that encodes the Jacobian between the model parameters and the market data. 
It is not a function of the weight supplied to the projectExposure call that initiates the projection. 
We would therefore waste effort by projecting exposure through the entire valuation stack on every 
iteration. Instead, while performing each iteration, we should treat the model parameters as the leaves of 
the calculation tree. Once the simulation is over and the (both value and exposure) contribution from all the 
iterations has been accumulated, we can complete the projection through the calibration. 

In order to achieve this separation we require the ability to work with Jacobians directly. This approach is, 
in a sense, the opposite of exposure projection, which emphasizes root-to-leaf traversals of the calculation 
tree, whereas each column of a Jacobian pertains to the boundary between one node and its children. 

7.2 
Underlying  
Projectors
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struct UnderlyingProjections : public Exposure
{
  // Fill a vector of partial derivatives with respect to immediately underlying variables
  virtual partialDerivatives( std::vector< double >& target ) const = 0;
  // Provide access to the objects which can project exposure onto the underlying variables
  virtual const std::vector< const Exposure* >& exposureProjectors ( void ) const =
  // Implement full exposure projection in terms of the above interface
  virtual void projectExposure( double weight,
                                exposures_t& target ) const;
};

In the stack shown in Fig. 7, exposure projection operates vertically but Jacobians are horizontal, 
connecting each layer to the next. For scalar-valued objects, this Jacobian capability is a specialization of 
the Exposure concept, because exposure projection can be implemented in terms of it. The following code 
provides a schematic example of what such an interface could look like. 

 

 

 

 
If an object  implements this interface, then the two pure virtual member functions 
provide access to the collections  and  in the full exposure projection 

 
 
which can be implemented by looping over the exposure projectors returned 
by exposureProjectors calling each with a weight given by the corresponding element of the vector 
filled by partialDerivatives. 

With an explicit Jacobian capability like that above, you can avoid needless per-iteration repetition of 
exposure projection through a calibration in a Monte Carlo simulation, which is just one of many possibilities 
for saving computational effort. Another important consequence of the ability to separate a group of 
levels in an exposure projection stack from another is to reduce the payload size in distributed and cloud 
computing scenarios. When transporting the information to run a subset of Monte Carlo iterations over 
a network, it is important to minimize the overhead of distribution. This means that we want to send the 
bare minimum information for a worker node to calculate. Such a worker node does not need to know 
anything about calibration, other than the resulting model parameters and how they are used to generate 
the relevant distributions. 

Later, in Sec. 8 (Page 43), when we compare EP with alternative approaches available in the literature, 
we will see that those alternative approaches work directly in terms of Jacobian matrices (or vectors 
for scalar-valued functions, as above). The partialDerivatives member function provides 
access to this vector for a given node in the calculation tree. In contrast, its companion member function 
exposureProjectors is new, as is the associated concept of exposure projection as defined in 
Definition 4. 

In effect, slicing calculation trees (such as that shown in Fig. 4) horizontally is a fundamental feature of 
alternative approaches found in the literature. To us, however, it is a suitable approach in  
some situations only and therefore available as an optimization, but important to separate  
from the fundamental abstractions such as Definition 4 that underpin any generic  
approach to analytic exposure calculation. 

7.2 
Underlying  
Projectors
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As our third and final illustrative example of how we can optimize exposure projections whose 
calculation trees fall into specific structural categories, consider a scenario where, as in Subsec. 7.2 (Page 
38), we wish to query an object for an explicit list of partial derivatives and projectors. 

Suppose that this object was an Engine that calculated the price of a barrier option by propagating the 
payoff at each time backward in time by means of an expectation over the underlying distribution’s 
transition density (typically performed in Fourier space, see Cherubini (2010)). The number of backward 
propagations is equal to the number of times that a possible breach of the barrier is observed and can 
be quite high. Even a one-year option monitored daily requires approximately 250 observations of 
the underlying. 

Each observation of the underlying requires an evaluation of the relevant model parameters, which in turn 
are likely to have a term structure. The model parameter term structures, if coming from a calibration, will 
have been calibrated to market quotes, but the number of maturities per year of suitable liquid calibration 
instruments is of the order of one, not hundreds. 

Fig. 8 gives a schematic illustration of this scenario, where the calculation tree flares out when a large 
number of observations of underlyings and model parameters is made, but tapers back in when the tree 
recombines on the relatively small number of interpolation points in the term structure for each model 
parameter. 

Fig. 8. Illustration of the flaring out of an exposure projection tree when a large number of observations 
are made of an underlying, resulting in a large number of evaluations of a curve, formed by interpolating a 
much smaller number of points.

7.3 
Peeking Through
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A Fourier-space backward propagation calculation such as our current example works on a set of samples 
of the underlying. In order to achieve sufficient accuracy, it is usually necessary to adopt a sampling 
granularity that results in the Fourier integral being performed over hundreds or thousands of values 
of the integrand. When combined with hundreds or thousands of elements in the vectors populated by 
the UnderlyingProjections interface, the number of distinct projectors can approach . 

The key to the “peek-through” optimization is the observation that there is nothing in 
the UnderlyingProjections interface that requires an object to report its exposure to 
its immediate underlyings. The only requirement is that it can split the calculation stack at some level and 
provide the corresponding list of partial derivative values and exposure projectors. 

To provide a sketch of how this idea works in the context of Fig. 8, write the barrier pricing engine’s 
calculation of the option price  as 

where the  model parameters  are obtained by evaluating a term-structure  over a large 
collection of  times ,

where  is a small collection of  interpolation points. We are free to relegate the  to the status of 
an internal implementation detail and instead have the UnderlyingProjections interface work in 
terms of 

 
where the partial derivative values are calculated internally as 

 
 
This ability to group together an arbitrary number of levels in the calculation stack is another example of 
the kind of optimization that makes the difference between an interesting academic topic and a mature 
production implementation of an analytic exposure computation platform. 

 
Some fundamental techniques for the analytic computation of partial derivatives have been known 
among computer scientists for several decades (Rall (1981)), Griewank (1989)), in the form of Automatic 
Differentiation (AD). Correspondingly, these techniques have been applied to problems in quantitative 
finance for many years; the analytic computation of discounting risk was commonplace in sell-side 
institutions in the mid-90’s. 

8.0 
Automatic Differentiation  
and Exposure Projection
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Due to the highly applied nature of quantitative finance, key innovations are almost always monetized 
before being published, with many implementation details remaining permanently beyond the realm of 
academic literature. 

The application of AD to financial problems has accumulated, however, a body of literature. The 
popularization of AD in finance began with Giles and Glasserman (2006). Since then, a range of papers 
describing AD applied to a collection of specific financial problems has appeared (see Homescu (2011) 
for a useful review). In this section we compare EP to AD and find that many of the ideas presented in 
this article are new; EP is an alternative approach to those available in the AD literature, with several 
practical advantages. Where there is common ground it is that both methods apply the chain rule of 
differential calculus, which is a necessary similarity between AD and any alternative method that 
differentiates functional relationships in software. 

Before examining the advantages of EP in Subsec. 8.2 (Page 45), we conduct a very brief survey of AD. 

 
As described at www.autodiff.org, Automatic Differentiation (AD) is a set of techniques based on the 
mechanical application of the chain rule to obtain derivatives of a function given as a computer program. 

Consider the function  formed by composing the functions  and 
 such that 

for ,  and . The chain rule allows us to decompose the  Jacobian  of   
as follows: 

where  and  are the Jacobians of  and  respectively. There is a straightforward generalization to 
an arbitrary number of function compositions, so we choose a single composition here for convenience 
and without loss of generality. Suppose that a computer program contains implementations  of  and 
explicitly, with  formed implicitly by supplying the output of  to a call to . 

AD defines two approaches to computing , forward (or tangential) and reverse (or adjoint) accumulation.  
In forward accumulation,  is computed first, followed by . In other words, the calculation tree for  
operation performed by  is traversed from its leaves to the root. The computational cost of such an  
approach scales linearly with the number of leaves because the calculation needs to be  
“seeded”, that is repeatedly evaluated with  on the 

8.1 
Brief Summary  
of Automatic Differentiation

http://www.autodiff.org/


Page 42 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

accumulation. This is well-suited to problems where , because it allows all  rows in  to be 
computed simultaneously for the  accumulation. Such problems are so hard to find in the context of 
financial derivative valuation that it is very rare to read of any application of forward accumulation in the 
literature. 

In contrast, reverse accumulation is most efficient when  and is closer in spirit to the idea of 
exposure projection presented in this article. It consists of two stages - a “forward sweep”, where the 
relevant partial derivatives (termed “work variables”) are formed, and then a “backward sweep” where 
the relevant products of partial derivatives are added into each element of  and , which can then be 
multiplied to obtain the full Jacobian . 

In the AD literature, one finds main two approaches to implementation, whether forward or reverse 
accumulation, for the function . Both approaches emphasize the problem of adding a differentiation 
capability to an existing codebase that computes the value alone. The first method, source code 
transformation is based on a static analysis of the source code for the function . New source code is 
generated for a companion function that computes , then both are compiled (or interpreted). 

The second method, operator overloading, requires a modern language such as C++ or Java where basic 
types can be redefined and operators can be overloaded, so that existing code that performs these 
operations will trigger the corresponding derivative calculations also. Forward accumulation is easier 
to implement in an operator overloading approach than reverse. A common technique for reverse 
accumulation is to generate a “tape” that records the relevant set of operations, then interpret that tape in 
order to obtain the desired derivatives. 

Both approaches suffer from high storage costs and long run-times, with the result that numerous 
implementation techniques have been devised to mitigate the performance challenges inherent with AD 
and it remains an active area of research. 

 
 
 
 
 
 
 
AD and EP both leverage the chain rule of differential calculus to compute derivatives analytically. Given 
that the chain rule is just the name given to the correct mathematics for differentiating nested functional 
relationships, it is not surprising that they share this common link. 

In a modern programming language, once a numerical algorithm’s data types are substituted with custom 
types supporting AD and the core operators are overloaded for those types, differentiation is truly 
automatic - the numerical algorithm’s code remains unchanged and no further work is needed to obtain 
its derivatives. The penalty for this automation, however, is performance, with challenges in both storage 
and computational time. In contrast, EP is not automatic in this sense - it explicitly requires derivatives to 
be implemented for each Engine, function and Parameter used in the calculation. The simple requirement 
that the Exposure interface is implemented allows quants and developers to choose the optimal granularity 
for the problem at hand, yielding implementations that are efficient in both memory and time.

8.2 
Comparison with  
Exposure Projection 
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In EP, further optimizations are possible, such as flattening and peek-through (see Sec. 7 (Page 31)), that 
facilitate the kind of fine-tuning of exposure calculations in a financial context that one expects to see in 
an approach that itself is optimized for the kind of problems found in financial derivative valuation and risk 
management. Like the conceptual framework of exposure projection described in Subsec. 3.4 (Page 13), 
these optimization are new. 

Many AD tools are available which retrofit a differentiation capability to existing code. Whether based on 
operator overloading or source-code transformation, these tools are forced to work at the granularity of the 
expressions in the existing code. The choice of granularity available in EP arises because it was conceived 
before development started on F3 - it was built in from the start - and both object-oriented programming 
techniques and a careful development process ensure that all future valuation functionality supports EP. 

Much of the AD literature describes techniques for computing partial derivatives (exposures) to a known 
number of independent variables (risk factors). This leads to exposure calculations whose structure is 
constrained by the set of quotes for a given valuation and results ultimately in systems that calculate 
exposure to a fixed number of quotes, or specific types of quotes only. In contrast, EP not only computes 
exposure to the relevant set of risk factors, but it also selects that subset of relevant risk factors from 
the total set of market observables in the Model, describing them in terms of the natural information 
content of financial market data, as described in Subsec. 3.1 (Page 6). 

Papers in the AD literature almost exclusively consist of applications to specific problems, of calculating 
exposure to known risk factors in the context of a specific model and valuation methodology. A handful 
of papers conduct a more general discussion and, at the time of writing, a growing number of banks 
have publicly indicated that they are currently applying AD techniques in some systematic manner in 
their next-generation library development. This article is the first to introduce ideas that facilitate a truly 
generic implementation of analytic exposure calculation - a guarantee that analytic exposure is available for 
every valuation. In addition, we provide an example, in the form of F3, of a mature implementation. 

One of F3’s hallmarks is its generic nature - any derivative or portfolio can be valued under the joint 
distribution for an arbitrary set of underlyings (Gibbs and Goyder (2013)). With its implementation of EP, 
Universal Algorithmic Differentiation™ (UAD), the same is true of analytic exposure computation. The 
result is an analytic exposure capability that is truly universal, in its comprehensive coverage and stable, 
mature implementation. Every valuation, in every model and for every valuation method, from closed-
form though backward propagation in Fourier space to hybrid Monte Carlo, has EP. Every sharp edge 
is smoothed, from a simple  through conditions to sorting operations. EP is available for all types of 
risk factors and in every valuation output, whether individual trades, portfolios or CVA on any type of trade. 
A rich set of applications that leverage analytic exposure computation, from hedging notionals, calculating 
hedging costs to generic gamma/ convexity and profit-and-loss attribution, is available. At every level, from 
end-user functionality to low-level debugging and testing parts of the API, EP output is available.

8.2 
Comparison  
with Exposure 
Projection
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In this section, we show two applications of UAD. Both are based on the same underlying portfolio of 
about 250 derivative trades and all calculations are done on a Desktop PC with an Intel Core i7 CPU. 
Approximately 80% of the trades are 10-year vanilla swaps paying 3-month USD Libor against a semi-
annual coupon. The remaining 20% comprises swaptions, CDS, FRA, vanilla EUR swaps, USD-EUR cross-
currency swaps, FX forwards and equity options. 

In this example we demonstrate the performance of F3’s UAD in a closed-form valuation setting by 
performing the calculations necessary to hedge our portfolio’s market risk. This market risk comprises:  

 • the equity’s spot price, funding rate, expected dividend term-structure and each point in its volatility surface 

 • each cash rate, futures price and swap rate in each currency 

 • each point in the term-structure of volatility chosen for the futures convexity adjustment, in each currency 

 • each tenor basis spread in each currency 

 • each swaption quote used to construct the volatility cube 

 • each CDS quote used to build the reference entities’ survival curves, and each point in the recovery rate term 
structure 

 • the FX spot quote 

The total number of values in this set is 411. Fig. 9 shows the time taken to calculate the exposure to each of 
these numbers using UAD and compares it to a finite difference calculation. In this particular example, UAD 
yields about a factor of 600 speed-up. The speed improvement afforded by UAD depends, naturally, on the 
content of the portfolio being valued and the modeling assumptions, and corresponding market data, used 
for the valuation. In practice, for most practical problems, it ranges from about a factor of 10 to a factor of 
10,000.

9.0 
Applications

9.1 
Hedging a  
Derivatives Portfolio
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Fig. 9. Time taken to calculate the exposure of a cross-asset, multi-currency portfolio of 242 vanilla 
trades to every quote on which the pricing depends, using F3’s Universal Algorithmic Differentiation™ 
(UAD, left) and by finite difference (Bumping, right). Note the logarithmic scale on the y-axis. In this 
particular example, UAD yields  
about a factor of 600. 

 
The report generated by UAD for this portfolio provides a very detailed view of its risk profile and contains 
too much information to display here in its entirety. However, we can explore some specific areas to get a 
feel for the rich nature of the information content. For example, Fig. 10 shows the effect of a percentage 
point move in each quoted option volatility for the equity. Such an exposure surface is provided by UAD for 
each equity underlying the derivatives in a portfolio.

9.1 
Hedging a  
Derivatives  
Portfolio
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Fig. 10. Change in portfolio value resulting from a one percentage point change in quoted option volatility 
for the underlying equity. UAD gives the exact partial derivative of portfolio with respect to each quote, 
which is then scaled by 1% to form the equity vega surface shown here. To obtain the overall vega 
value resulting from a parallel 1% shift in all quoted option volatilities, we simply sum the values shown in 
this plot. 

 
While the fundamental quantity calculated by UAD is exposure; the partial derivative of portfolio value with 
respect to a given quote, it is often more useful to present the information in terms of a corresponding 
hedge. Given the exposure  of the portfolio’s value  to the  quote , this is a straightforward 
calculation. Suppose  is the par rate of an interest rate swap with annuity  and floating leg value  (per 
unit notional), following the notation of Sec. 7 (Page 31). We seek the notional amount  of this swap that, 
when combined with our portfolio, eliminates the exposure to small moves in . We require

 
and so

Volatility surface exposure
9.1 
Hedging a  
Derivatives  
Portfolio
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UAD provides  for each swap, and appropriate measures for other instruments such as the required 
number of futures contracts. Some of these values are displayed in Fig. 11 for the current example portfolio, 
where we can see that our exposure to USD curve instruments is dominated by the T/N and 2-month cash 
deposit rates, and the 10-year swap rate. 

Fig. 11. Portfolio exposure to USD curve instruments, given in terms of the equivalent hedge. 

 
The example shown here is representative, not exhaustive. UAD allows the calculation to scale to large 
portfolios, complex modeling assumptions and different valuation methodologies such as Monte Carlo and 
backward evolution approaches. In Subsec. 9.2 (Page 51) we show UAD at work in a Monte Carlo valuation.

9.1 
Hedging a  
Derivatives  
Portfolio
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We now switch to a Monte Carlo valuation setting and calculate the Credit Value Adjustment (CVA) for this 
portfolio. Then we apply UAD to the CVA itself, to study its response to market fluctuations and address 
the additional market risk that it introduces. 

 
The CVA of the portfolio V can be expressed as 

where  is the recovery rate at time ,  the value at time  of the remainder of the underlying 
portfolio whose value is ,  the appropriate numeraire factor (for example  
in the -forward measure) for a cash flow at time ,  the time of counterparty default and  
is a default indicator, evaluating to 1 if  lies between time  and  and 0 otherwise. In order to 
proceed numerically, it is necessary to approximate this time integral. Subdividing into  time intervals 

 which are sufficiently small such that any variation of  within them can be neglected, 
the integral is 

 
where 

 
Eq. (44) gives the rate of loss over the  time interval given that a credit event occurred within it and Eq. 
(43) describes the payoff of a product whose value is the loss that would result from counterparty default 
occurring within the  time interval. The expected value of this product is the contribution of the given 
time interval to the total integral in Eq. (41) which spans the length of the underlying product. 

In this example, we calculate not only CVA, but the market risk of CVA for each of the several hundred  
quotes on which it depends. For the  market quote , the exposure of CVA to it is defined as

9.2 
Hedging CVA

9.2.1 
CVA Trade Structure
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where  is given by Eq. (42). That CVA is a tradeable quantity is evident from Eq. (41), which expresses 
a just another derivative valuation, albeit a complex one. The derivative product comprises a portfolio of 

 options on the remainder of the portfolio V, scaled by a loss-given-default observable. F3 is capable of 
describing trades at a very generic level, which means that the necessary core operations are available and 
work with arbitrary underlying trades. These operations are: 
 

1. Portfolio: form a trade that is the sum of others, as in Eq. (42). 

2. Date restriction: form a trade by imposing a time window on underlying trade. If the time 
window extends beyond the latest payment in the underlying trade then we obtain the 
remainder . 

3. Scaled cash flows: form a trade from another by scaling each cash flow amount by an 
observable. If the observable is the loss-given-default from Eq. (44) then we obtain default-
contingent flows. 

4. Conditional Choice: Form a trade that represents the right to choose between two underlying 
trades at some future time. If the second trade is a null trade that is without value, then this 
yields the positive part of the first. 

 

In order to calculate CVA, we need to evaluate each of the expectations in Eq. (42). It is common practice at 
this point to make various assumptions about the lack of correlation among the set of state variables in V 
and the credit variables  and , in order to simplify the valuation. Furthermore, it is typical to 
rework the implementation each time a modeling assumption changes, even though the CVA expressions 
above do not depend on modeling assumptions, except through the details of the expectation operator 

. 

In contrast, F3 separates the description of what is valued (trades) from how it is valued (modeling). 
Changing modeling assumptions across the full spectrum from highly simplified uncorrelated treatments to 
a complex hybrid simulations becomes a matter of configuration, not implementation. In our example, we 
have the following state variables:  

5  USD interest rate term structure 

6  EUR interest rate term structure 

7  The USD-EUR FX rate 

8  One equity asset 

9  The counterparty’s survival 

We choose low-dimensional Hull-White models for each interest rate term-structure, a 
lognormal assumption for the FX rate and the Heston model, with time-dependent parameters, for the 
equity. While we are free to model wrong-way risk by choosing a dynamical model for the survival of 
the counterparty, in this example we neglect its contribution by choosing static credit model, thereby 
decoupling the dynamics of survival from the rest of the state variables. 

9.2.2 
Modeling and Valuation
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The calculation is performed by Monte Carlo simulation, using a technique called Automatic Numeraire 
Corrections (Gibbs and Goyder (2013)) in order to reconcile the different measures in which each marginal 
distribution is simulated. The resulting joint distribution is self-consistent and accounts for the correlation 
between the four state variables in the simulation. Each conditional choice arising from the  in Eq. 
(43) is processed via a backward Monte Carlo algorithm, which is general enough to handle essentially 
arbitrary trades within the underlying portfolio. For example, the European swaptions in portfolio V could 
be replaced with Bermudan swaptions, or some callable Libor exotic, or even exotic hybrid trades, and the 
same valuation instructions would yield the CVA calculation appropriate for the modeling assumptions 
described above. 

We used a Sobol quasi-random number generator and found that  iterations were sufficient to 
achieve convergence in this example. Owing to an additional volatility cube and other modeling parameters, 
including correlations between the Brownian motions driving the simulation, the number of quotes to which 
the CVA is exposed was 542. The computation time for calculating CVA was about 10 minutes on a desktop 
machine. Consequently, by employing traditional finite difference methods, exploring the degree to which 
the CVA depends on local changes in each of the 542 market risk factors, in order to find the relevant set, is 
impractical without significant computational resources and implementation effort to distribute the work. 

In practice, intuition is employed. A CDS on the counterparty, if one exists, is the canonical hedge for CVA. 
However, there is no fundamental rule that says CVA is a stronger function of the counterparty’s CDS 
spread than other market risk factors - in practice, it depends on the underlying portfolio. With F3’s UAD, it 
is not necessary to fall back on intuition because calculating the exposure of CVA to each of the 542 quotes 
takes just 4 times as long as the valuation of CVA. The resulting risk report can then be sorted in order of 
decreasing exposure size to reveal which quotes have the strongest influence on changes to CVA. Fig. 12 
shows the first 50 of these 542 exposures. In this example, we can see that although the counterparty’s 
CDS spreads rank in the top 20, the exposure is dominated by the US vanilla rates market.

9.2.2 
Modeling  
and Valuation
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Fig 12. Ordered list of the 50 highest values of the market risk of our example portfolio. Each bar is (the 
logarithm of the magnitude of) the partial derivative of CVA with respect to an individual market quote. 
The bars have been grouped into categories, shown by color. The entire set of 542 exposures, of which 
the top 50 is shown, took approximately 4 times as long as the valuation of the CVA itself. 

We introduced Exposure Projection (EP) in Sec. 3 (Page 6), a new method for the fast calculation of 
first-order exposure that yields several advantages over existing methods in the literature. Existing 
approaches - notably (adjoint) Automatic Differentiation (AD) - suffer from challenges in both storage 
and run-time performance, when managing large collections of exposures to many different factors. In 
contrast, implementations of EP (such as F3’s Universal Algorithmic Differentiation™) naturally induce 
an efficient storage scheme within a program’s stack and afford opportunities for optimization. The 
resulting implementation exhibits efficiencies in both storage requirements and speed.

Relative size of CVA exposure to 50 quotes

10 
Conclusion
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Despite the simplicity of the underlying mathematics, implementations of AD remain focused on specific 
applications, calculating some risk factors for a particular model or class of models, or for a specific set 
of trades, or both. With EP, however, it is possible to address the issue of analytic exposure calculation 
generically - once for all combinations of trade types, models and valuation methodologies. To this end, 
we focused on the principles underlying the construction of a generic valuation platform in which EP 
takes center stage at all levels of the valuation stack, from Parameters at the bottom through functions to 
Engines at the top. The generic form of the exposure of calibrated model parameters to market data was 
given in Sec. 5 (Page 21), a treatment of discontinuities, including those present in sorting algorithms was 
covered in Sec. 6 (Page 28) and an indicative sample of the types of optimization that are possible in EP was 
presented in Sec. 7 (Page 31). Finally, in Sec. 8 (Page 43), we conducted a comparison of the salient aspects 
of AD with EP and listed a number of ways in which EP represents an advancement over the state of the 
art. 

F3 is a generic valuation platform that contains a complete implementation of EP that draws on all of 
the ideas presented in this article, called Universal Algorithmic Differentiation™ (UAD). With UAD, the 
entire exposure of virtually any derivative or portfolio can be calculated in any model and in under any 
valuation approach. In Sec. 9 (Page 47) we demonstrated the application of UAD to a multi-currency, 
cross-asset portfolio of about 250 trades and calculated its exposure to over 400 quotes in 1 second. 
We then demonstrated UAD in a hybrid Monte Carlo setting, calculating over 500 hedge factors for the 
portfolio’s CVA. 

 
The authors are grateful to Lois Patterson for help in reviewing the manuscript and Geoff Lynch, Anindya 
Mukherjee and Glen Goodvin for help in preparing the examples.
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