
(c) FinancialCAD Corporation. All rights reserved

Universal
Algorithmic
Differentiation™
in the F3 Platform

Technical Paper
Version 1.1

Dr. Mark Gibbs
Dr. Russell Goyder

Published
December 2014

Page 02 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

1.0 Abstract 03

2.0 Introduction 03

3.0 The conceptual structure of exposure 06
3 1 Market data 06
3 2 Storing and reporting exposure 08
3 3 The mathematics of exposure 10
3 4 Exposure projection 13
3 5 Storage model 15

4.0 The valuation stack 17
4 1 Parameters 17
4 2 Function exposure 18
4 3 Engine exposure 20

5.0 Calibration 21
5 1 Root searches 22
5 2 Gradient descent and global optimizers 25

6.0 Discontinuities 28

7.0 Optimizations 31
7 1 Flattening 33
7 2 Underlying projectors 35
7 3 Peeking through 39

8.0 Automatic Differentiation and Exposure Projection 40
8 1 Brief summary of Automatic Differentiation 41
8 2 Comparison with Exposure Projection 42

9.0 Applications 44
9 1 Hedging a derivatives portfolio 44
9 2 Hedging CVA 48
9 2 1 CVA trade structure 48
9 2 2 Modeling and valuation 49

10 Conclusion 51
11 Acknowledgements 52

Bibliography 53
Disclaimer 54
Copyright 54
Trademarks 54
Revisions 54
Document Information 54

Universal Algorithmic
Differentiation™
in the F3 Platform

Contents

Page 03 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

We present Exposure Projection (EP), an approach to the analytic computation of first order exposure to
risk factors in financial models which yields dramatic performance improvements over the use of finite
differences in typical applications. We demonstrate a mature implementation of EP within FINCAD’s F3
Enterprise Valuation and Risk Platform, called Universal Algorithmic Differentiation™ (UAD).

Exposure Projection represents an advance over the state of the art in analytic first order risk computation,
in a number of ways. The set of quotes to which a portfolio is exposed is identified automatically. By
avoiding operator overloading, we can choose the optimal granularity at which the chain rule encodes the
differentiation and avoid the high storage and run-time costs associated with other implementations. We
present three performance optimizations suited to calculation trees with specific structural properties and
provide a generic approach to handling discontinuities, including those present in sorting algorithms. The
analytic computation of first order risk has been popularized in the finance industry in recent years under
the umbrella term “Automatic Differentiation” (AD). We conduct a brief survey of techniques available in the
AD literature and compare them with EP.

UAD enables analytic exposure calculation within a generic architecture for derivative valuation, in
contrast to the bulk of the literature, which presents model or trade-specific examples. This guarantees
fast, analytic exposure calculation for all valuations, vanilla to exotic, single trade to portfolio, under all
models and valuation methodologies. We demonstrate UAD in a closed-form setting by hedging the market
risk of a multi-currency portfolio of derivatives, and in a Monte Carlo simulation by applying UAD to the
portfolio’s CVA in a 2-currency FX-rates-equity hybrid model.

In times of crisis, the measurement, understanding and management of risk is brought into sharp focus.
In the uncertain economic times of the current post-crisis landscape, exotic derivatives and the associated
models are regarded with suspicion. The major challenges of quantitative finance are not in the realm of
high theory for modeling a particular asset class for exotic valuation, but are in the areas of counterparty
exposure calculation and the aggregation of risk across desks and businesses. Questions such as “How do I
hedge my portfolio?” and “How does this trade impact the bank’s capital requirements?” are in the spotlight.

There are many sources of risk: operational, market, liquidity and so on. Our focus in this article is market
risk. Within market risk, the front and middle offices emphasize different aspects and calculations. Traders
in the front office are concerned with profit and loss on their books and as such, for a calculation to be
relevant to the business, it must impact the bottom line by assisting in decisions whose outcome can be
monetized by trading in the markets. The canonical example of such activity is hedging, for which the first-
order exposure (that is, sensitivities - like an option’s Greeks such as delta and vega) of a trading book to
market risk factors is commonly used.

1.0
Abstract

2.0
Introduction

http://www.fincad.com/derivatives-solutions/f3/default.aspx

Page 04 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Before a trading book is hedged, it must be valued. Accurate valuations of derivative portfolios must
account for counterparty risk. We described the construction of an appropriate and consistent collection
of curves that forms the static part of a model, for the valuation of vanilla portfolios in the context of the
relevant set of collateral agreements, in Gibbs and Goyder (2012). Exposure to counterparty default is
also encoded in a Credit Value Adjustment (CVA) applied to a given trade, to calculate a new price that takes
such risk into account. The calculation of both vanilla portfolio’s value and CVA can result in outcomes that
can be measured in the profit and loss of a trading desk.

This contrasts with middle office roles who are asked to calculate more subjective measures of risk such
as Value-at-Risk (VaR) and Potential Future Exposure (PFE). These fall into a category of calculations based
on statistics (such as percentiles) of distributions of portfolio value over potential market scenarios. The
distributions chosen are not pricing distributions taken from the market, but adjusted in a variety of ways,
usually so that the implied probability of future events matches some understanding of or assumptions
about reality, which in turn is often based on an extrapolation of history.

This article focuses on the problem of computing of first-order exposure, which is of primary application to
hedging in the front office. We introduce a new approach to this problem called Exposure Projection (EP),
which displays a number of advantages over existing methods in the literature. In addition, we demonstrate
a complete implementation of Exposure Projection called Universal Algorithmic Differentiation™ (UAD),
within F3, a modern analytics platform whose architecture represents a distillation of the accumulated
wisdom of over two decades of sell-side analytics platform development. While F3 supports the
full spectrum of calculations described above, we concentrate here on first-order exposure.

Denote the exposure of a portfolio of value to one of the market quotes on which
its value depends, , by . This is a generalization of the meaning of in the specific context of option
pricing, where is the spot price of the underlying. is the partial derivative of with respect to :

Computing is traditionally achieved by the method of finite differences, or “bump and grind”. For
some small (often one basis point) bump size , is commonly approximated based on the
forward difference between the portfolio value at each point, as follows. Using the short-hand ,

 we have

where . The cost of this approach scales linearly with the number of risk factors of
interest. For all but the smallest vanilla portfolios, this means that exposure to every relevant quote is
seldom calculated in practice. Rather, approaches such as bumping an entire collection of market quotes
(“bumping the yield curve”) are followed. Another consequence is that some quotes can be ignored and
relevant exposure missed because intuition, not computation, is used when exploring exposure. Conversely,
for a comprehensive calculation of portfolio exposure, hardware can be thrown at the problem, with the
result that banks have some of the largest implementations of grid and cloud computing infrastructure in
private enterprise.

2.0
Introduction

http://www.fincad.com/derivatives-solutions/f3/default.aspx

Page 05 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

In contrast to this brute-force approach to exposure calculation, it is possible to compute exactly, at a
computational cost that is essentially constant with respect to the number of risk factors, by applying the
chain rule of differential calculus. This represents a significant advance over the bump-and-grind status quo,
resulting in many cases in several orders of magnitude of computational speedup.

Methods for implementing the chain rule are being popularized at the moment, under the umbrella of
Automatic Differentiation (AD). While new to many, AD itself is decades old and a number of examples of
such analytic exposure calculations are available in the academic literature. However, these methods suffer
from a variety of drawbacks, including:

 • The set of risk factors to which exposure is calculated, , and therefore the size of that set,
must be known in advance.

 • The set of risk factors that can be handled is rather small.

 • Implementations cover special cases. The academic financial engineering literature provides
some ideas and techniques, along with some prototype implementations. Within industry,
implementations do exist in production systems, but only for some trades in some areas of some
institutions.

 • Software tools attempt to add analytic exposure computation to existing code, rather than
designing it in from the start, resulting in missed opportunities for optimization.

 • Potentially troublesome storage requirements for the intermediate variables used in the
calculation.

In contrast, Exposure Projection (EP) gives the relevant set of risk factors as an output for essentially
any derivative or portfolio, in any supported valuation approach, whether Monte Carlo simulation, closed-
form, or backward-propagation in Fourier space (Cherubini (2010)). EP was designed into F3 from the start,
resulting in a mature, stable, comprehensive and efficient platform for analytic risk computations that is
unique among analytics vendors and, to the best of our knowledge, unparallelled by any analytics platform
on the planet.

This article explains how to construct such a capability. It starts with a description of Exposure
Projection itself and the fundamental ideas on which EP is based in Sec. 3 (Page 6). We then move
through the calculation stack in Sec. 4 (Page 17) and in doing so, cover the analytic calculation of the
exposure of derivative payoffs to model parameters. In Sec. 5 (Page 21) we deal with the problem of
propagating analytic exposure through an arbitrary calibration procedure, and then explain how to deal
with discontinuous payoffs in Sec. 6 (Page 28).

Having established the fundamentals of Exposure Projection, in Sec. 7 (Page 31) we describe some
refinements and optimizations of primary interest in specific computational settings, then demonstrate the
capability, giving performance measurements, in Sec. 9 (Page 47). In Sec. 8 (Page 43) we conduct a survey
of Automatic Differentiation and highlight the advances made by Exposure Projection before concluding in
Sec. 10 (Page 54).

2.0
Introduction

Page 06 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The foundation of analytic exposure is differential calculus. For the portfolio V in Sec. 2 (Page 3) (whose
value is given by , we can write

The content of any exposure calculation is embodied by the pairing of with . While is just a set of
numerical values, in order to form an adequate representation of the information associated with , a
richer conceptual structure is required. We explore this structure in Subsec. 3.1 (Page 6) before proceeding
to an explicit treatment of exposure calculation in Subsec. 3.3 (Page 10) and Subsec. 3.4 (Page 13).

While the final answer for any exposure calculation is the set , in order to construct a useful report,
these numbers must be labelled in some manner. We can base such labels on information associated with
the because they represent the factors to which the portfolio V is exposed. Such numbers are almost
always grouped together in sets of a common type and that type is essentially the class of instrument
for which they are quotes. For example, we might want to know the exposure of our portfolio to the par
OIS rates used to build the discount curve, or the cross-currency swap par rates used to imply the discount
curve in another currency.

We have, then, part of our labelling scheme - we need something that encodes the type of instrument
quoted in the market. The remaining information required to uniquely identify one of the is something
that selects one instrument within the instrument type. For many instrument types, such as the swaps
mentioned above, there is a clear one-to-one map between and the maturity of the quoted instrument.
Other instrument types however, require more than a single maturity to specify them completely. For
example, swaption quotes populate a volatility cube, whose axes are defined by the strike and expiry of
the option together with the length of the swap resulting from exercising the option. There is clearly an
abstraction emerging, which we term QuoteSpecification, that encodes the idea of the information that
maps to for a given type of instrument. Before defining it explicitly, however, we must be more precise
about what we mean by “type of instrument”.

Here, we meet a very intuitive concept, for which we can easily give many examples, but whose rigorous
definition is somewhat abstract, though highly useful. Examples include LIBOR swaps, cash deposits, OIS,
European equity options, swaptions, futures and many more.

3.0
The Conceptual
Structure of Exposure

3.1
Market Data

Page 07 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As described in Goyder and Gibbs (2012), a Product encodes the legal terms of a trade and forms one of the
fundamental abstractions of F3. The utility of the InstrumentType concept resides in the ability to define
a single operation which, for any instrument, constructs the corresponding Product. As demonstrated in
Gibbs and Goyder (2012), the canonical application of this capability is to ensure that the calibration of a
Model (again, see Goyder and Gibbs (2012)) is consistent with subsequent valuations based on the Model.

For example, the InstrumentType for a vanilla US dollar LIBOR swap includes information such as the
definition of the rate paid by the floating leg (3-month USD LIBOR) and how to generate the payment
schedule for each leg.

Given Definition 1, we can now define the QuoteSpecification concept.

It may trouble the reader to observe that these two definitions are mutually recursive, but this just reflects
that the border between InstrumentType and QuoteSpecification is essentially arbitrary, to be chosen based
on practical concerns. The rule of thumb is that an InstrumentType identifies a screen or table of quotes in
an individual’s ideal market data management system, and a QuoteSpecification identifies a single entry on
that screen.

On a practical note concerning the reporting of exposure, it is useful to be able to represent both
InstrumentTypes and QuoteSpecifications as strings. We find it very useful to define two levels at which
sorting and classification can be performed within such reports by forming a two-component string
representation of an InstrumentType, called a marketdata_tag (or tag for short). On a practical note, these
tags are readily used as keys in maps. A map of tags to collections of instruments, where each instrument
is the triplet of an InstrumentType, QuoteSpecification and a quote, forms a set of market data in F3. Fig. 1
illustrates this structure.

It can be defined more rigorously however as follows.

Definition 1. InstrumentType concept
A mapping from

1. a QuoteSpecification,
2. a quote date,
3. a notional amount
4. and a trade direction

to a Product.

Definition 2. QuoteSpecification concept
The information required to uniquely identify one instrument among instruments of a common
InstrumentType.

3.1
Market Data

Page 08 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 1. The structure of market data. A market data set comprises several elements, each identified by
a tag. An element is a collection of instruments and each instrument comprises an instrument type,
a quote specification and a quote. The remaining information required to form a real trade is
a notional amount, trade date and trade direction (pay or receive, for example)

We have seen in Subsec. 3.1 (Page 6) how the risk factors to which our portfolio may be exposed are
structured. In light of this structure, we can now tackle the problem of how to store and report exposure.
We need an association of the numerical value with the quote (again just a number) and its
corresponding QuoteSpecification and InstrumentType.

Conceptually, the structure we need is defined as follows.

3.2
Storing and
Reporting Exposure

Page 09 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Although this mapping is the fundamental form that exposure information takes, in practice it can be more
convenient to work with market data tags and vectors of values, illustrated schematically as follows.

The above code shows a toy implementation of the ExposureTarget concept. In practice, both tag_t
and exposure_values_t would be classes, in order to implement an appropriate comparison predicate,
pretty-printing and other operations such as hash code calculations to support a hash-map, instead
of a standard map, to optimize performance. While Definition 3 is phrased in terms of the salient
concepts of InstrumentType and QuoteSpecification, the exposures_t type works with a tag as a proxy
for the InstrumentType and a numerical index (into the exposure_values_t vector) as a proxy for the
QuoteSpecification. This works well in practice because it is only when generating a final report for the user
that we need the full set of information, which can always be extracted from the Model.

To populate an ExposureTarget, we need another concept, which we term LeafExposure, which accumulates
a value into one of the elements of the vector associated with a given tag. If s_i is an instance of
LeafExposure whose internal state consists of a tag and the value i, then we seek behaviour along the
following lines.

This is not quite what happens in practice in F3’s Universal Algorithmic Differentiation™, as we shall see in
Subsec. 3.4 (Page 13), but serves to illustrate the general idea for now. For this reason, we defer discussion
of any formal definition of LeafExposure until Subsec. 3.4 (Page 13), where we find that it is a specific
example of a more general concept.

Given an ExposureTarget populated with the exposure of a portfolio, a natural next step is to form a report
of its content to the user. Suppose takes the value USD 523000 for our portfolio, the tag represents a
vanilla LIBOR swap InstrumentType and that i corresponds to a QuoteSpecification encoding the idea of “a
maturity of five years”. A suitable report would then appear as follows.

Definition 3. ExposureTarget concept
A mapping from

1. an InstrumentType
2. and a QuoteSpecification

to a numerical value.

typedef std::pair< std::string, std::string > tag_t;
typedef std::vector< double > exposure_values_t;
typedef std::map< tag_t, exposure_values_t > exposures_t;

exposures_t target; // empty ExposureTarget
double Delta_i = getTheCorrectExposureValueSomeHow(some, arguments);
// details to follow
s_i.storeExposure(Delta_i, target);
// target[s_i.tag()][i] is now Delta_i;

3.2
Storing and
Reporting
Exposure

Page 10 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Market
Data
Name

Market
Data Type

Quote
Specification

Quote Currency Exposure Exposure Type

USD SwapRates 5y 1.081% USD 523000.00 <RawValueExposure>

The first four columns describe the quote to which exposure has been computed and the remaining columns
display the exposure to that quote. The column headings are described as follows:

Market Data Name First string which forms the tag for this market data element

Market Data Type Second string which forms the tag for this market data element

Quote Specification String representation of the information identifying this instrument within
the element, such as its maturity

Quote The quote to which exposure is reported

Currency The currency of the exposure

Exposure The value of the exposure,

Exposure Type A string which indicates the type of exposure being reported

In the example above the exposure type is <RawValueExposure>, indicating that the given value is the
raw partial derivative as opposed to some other way of presenting the information, such as a hedging
notional (see Fig. 11).

While a report of a portfolio’s exposure to market quotes is of prime interest in any production
setting, during the development, testing and debugging of valuation functionality it is often preferable
to see exposure to model parameters, separate from any subsequent calculation concerning the
relationship between calibrated model parameters and market quotes. While the above discussion was
presented in terms of market quotes, we can easily calculate and report model parameter exposure, by
simply generalizing the concept of “market data” in this context. When calculating exposure to the inputs
of a valuation, “market data” is effectively defined as the inputs to which exposure should be reported,
whether they have come from the financial markets or not. There is no constraint on where the inputs of
a calculation have come from, only that they are labeled such that each occupies a separate location in an
ExposureTarget.

Having described the structure of an exposure report and having seen how it can be populated with
exposure values, we are now finished apart from the minor detail of the implementation of the function

getTheCorrectExposureValueSomeHow(some, arguments);

from Subsec. 3.2 (Page 9).

3.3
The Mathematics
of Exposure

Page 11 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

We shall see that there is a single unifying operation that encompasses all exposure calculations, including
the final accumulation of weight into the ExposureTarget described in Subsec. 3.2 (Page 9).

In order to illustrate how this can be approached, consider the following example portfolio U consisting of
two trades A and B, weighted by their notionals and , where A is a cross-currency swap between the
numeraire currency of US dollars and the asset currency of Sterling, and B is a Sterling equity forward. If
and are the (unweighted) US dollar values of the trades A and B, then the portfolio’s value can be
written as

While the techniques we develop in this section are general and apply to any portfolio, for the sake of
illustration we can take advantage of our knowledge of this small and relatively simple portfolio to see how
the calculation can be broken down. In Subsec. 3.2 (Page 9) we examined the arbitrary portfolio V, exposed
to the quotes , without grouping those quotes into InstrumentTypes (see Definition
1). For the portfolio U, we can assume that the cross-currency swap A is exposed to three InstrumentTypes:

 • USD vanilla interest rates swaps. Denote quotes of this type by ,

 • GBP vanilla interest rate swaps. Denote quotes of this type by and

 • GBP-USD FX spot. Denote this quote by .

The value of the cross-currency swap is therefore a function of these three variables, .
Similarly, we know that the Sterling value of the Sterling equity forward depends on:

 • the GBP vanilla rates market and

 • equity-related factors such as the spot equity price and assumptions about future dividend
payments, which we denote .

This means that , the (unweighted) US dollar value of this Sterling equity forward, , can be expressed as

where is the Sterling worth of the equity forward. Listing these dependencies explicitly, Eq. (3)
becomes

Our eventual goal is to evaluate the exposure of U to the relevant market quotes:

where we have adopted the short-hand notation

3.3
The Mathematics
of Exposure

Page 12 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

to express the sums concisely. Given that , , and are market quotes, once the corresponding weight
factors such as have been calculated, they can be stored and reported by means of the LeafExposure
concept as described in Subsec. 3.2 (Page 9). However, because we know the functional form Eq. (3) and
Eq. (4) of the portfolio U, we can begin to calculate these weight factors explicitly. In doing so, we will be
able to identify the common pattern that all exposure calculations take and provide a formal definition in
Subsec. 3.4 (Page 13).

The functional relationships we have seen in our portfolio so far are a linear function
 and a product function . In terms of these functions, our portfolio’s

value can be expressed as

Applying the chain rule of differential calculus to these functions yields the following expressions

which, when applied to Eq. (7) and Eq. (8) give

This application of the chain rule is a recursive process. We could now apply our knowledge of the functional
relationships present within A and C to repeat this process over and over again until we arrive at the
end-points defined by LeafExposures which then store the result ready for reporting to the user. However,
for our current purposes of identifying the common structure that pervades these calculations, we have
already gone far enough in this direction. Before discussing this common structure explicitly in Subsec. 3.4
(Page 13), we consolidate our process so far by expressing the exposure of U in terms of market quotes. The
exposure of and to the market is given by

which, when substituted into Eq. (9) and Eq. (10), gives an updated version of Eq. (5),

3.3
The Mathematics
of Exposure

Page 13 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

In the preceding section (Subsec. 3.3 (Page 10)) we explored the mathematical structure of exposure using
the example of a portfolio U whose exposure was divided into four distinct categories, . We
saw how the rules of elementary differential calculus allow us to calculate the values () that are stored
in an ExposureTarget by considering two functional relationships present within U. Although we explicitly
described the application of the chain rule for a linear function and a product function , we
also identified how subsequent functional relationships would be handled.

In doing so, at all times, we were working with equations of the same fundamental form as our original
equation Eq. (2). This is the first key observation that makes it possible to handle exposure generically.
It means that there is an operation, which we term exposure projection, that is common to all such
calculations. In addition, in all of these formulae, the differential operator appears on both the left and
right hand sides of the equations. There is clearly a recursive structure present, which means that the
exposure projection operation will be performed as part of another (calling) exposure projection.

As a brief aside, the reason for using the term “projection” is the close analogy between exposure and a
basis spanning a vector space. Given an orthonormal vector basis in dimensions , we
find the components of an arbitrary vector by projecting it onto the basis:

Given a function of variables , we can regard the inputs as a basis for its
exposure:

The “component” of , the full exposure of in the “direction” is the partial
derivative with respect to the corresponding variable, .

The second key observation we make is that exposure to a given market factor, such as the spot FX
rate , is composed of a simple sum of terms. This remains true even for nonlinear functions such as

 due to the first-order nature of the calculation - we focus on small changes in and neglect higher-
order terms, deferring their treatment to the general topic of scenario analysis. It does not make sense
to construct this sum of terms explicitly, however, because portfolios are not organized according to the
market data required to calibrate the models used for their valuation. Instead, it is best to regard the sum
as an accumulation, with contributions from many different parts of a calculation, into the relevant part of
some target object, in our case an ExposureTarget. Therefore, the exposure projection operation must take a
reference to the target as one of its inputs.

3.4
Exposure Projection

Page 14 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The third key observation we make concerns the nature of the terms that are accumulated into the
ExposureTarget. They consist of successive multiplicative factors, again because first-order exposure is
fundamentally a linear operation. A new factor appears whenever a functional operation such as is
composed with another such as , as in Eq. (7) and Eq. (8). In other words, each time we encounter
the derivative operation applied to a function , we obtain the same operation, but applied to its
arguments, and weighted by a numerical factor that is composed of the partial derivatives of with respect
to its arguments. In fact, if itself is the argument of another function , then will be weighted by .
We see therefore that a weight factor must be present in the exposure projection operation.

Given the above considerations, the exposure projection operation can be captured by the following
interface:

struct ExposureProjector
{
virtual void projectExposure(double weight,

exposures_t& target) const = 0;
};

Each time we write an equation in terms of differentials as in Eq. (2), we can identify each operation with a
call of some implementation of this interface. For example, the act of initiating the exposure calculation for

 would be encoded as

Stepping into this function, we would see

 which is the implementation of the binary linear sum operation of Eq. (9). The implementation of the
first exposure projection operation (on A) is not shown here because we did not explore the form that A’s
dependence on its arguments , and takes. However, Eq. (10) represents the product function ,
which allows us to show the implementation of
B.projectExposure(weight * lambdaB, target);

virtual void projectExposure(double weight,

{
// weight is now 1.0 * lambdaB
C.projectExposure(weight * phi, // 1.0 * lambdaB * phi,

target);
phi.projectExposure(weight * C, // 1.0 * lambdaB * C,

target);

}target);

}

exposures_t& target) const // member function of B’s

exposures_t target;

U.projectExposure(1.0, target);

// lambdaA * dA
A.projectExposure(weight * lambdaA, // weight is 1.0

target);
// lambdaB * dB
B.projectExposure(weight * lambdaB,

target);

3.4
Exposure
Projection

Page 15 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As with A, we did not pursue the form that C’s dependence on its arguments takes and so we do not
show any implementation for it. However, phi is not a function of any other variables - it represents an
end-point in this set of projectExposure calls and as such, it encodes the LeafExposure concept
of Subsec. 3.2 (Page 9). In fact, the above code reveals that there is no need for a separate LeafExposure
operation (called storeExposure in Subsec. 3.2 (Page 9)) at all - it is just yet another example of the
projectExposure interface at work. Its implementation in the case of LeafExposures will make no
further projectExposure calls. Rather, it will, given knowledge of its tag and numerical index, insert a
value into the appropriate location within the target.

We can now define the central concept that underpins EP:

We see that LeafExposure is a specific type of Exposure, one which populates an ExposureTarget.

The code phi.projectExposure(weight * C, // 1.0 * lambdaB * C, target
); is, in fact, the first point in our example at which the exposure target is populated with any values. The
value accumulated is readily identified with the term in Eq. (11). When an exposure projection is
performed on a composite object which in turn depends on other arguments, (a reference to) the target is
simply passed down the execution stack. But whenever an end-point in this chain of calculation is reached,
the target accumulates a value. In this way, the appropriate values are accumulated in the appropriate
locations in the exposure target, in this case given by Eq. (11).

We can use the simple example from Subsec. 3.3 (Page 10) to illustrate the nature of the storage
requirements of an exposure projection. The following pseudo-code represents the set of exposure
projections examined in Subsec. 3.4 (Page 13), with the interface projectExposure(weight,
target)abbreviated to pE(weight). In other words, projectExposure has been shortened
to pE and the ExposureTarget has been dropped from the notation (although it must remain within the
scope of each function call), for brevity.

Definition 4. Exposure concept
An object with the ability to perform an exposure projection.

U.pE(w) // overall weight w (= 1.0 above)
|-- A.pE(w * lambdaA) // add w onto stack
| |-- ... // add lambdaA (etc, according to internal structure of A) onto stack
|-- B.pE(w * lambdaB) // remove everything but w
 |-- phi.pE(w * lambdaB * C) // add lambdaB
 | |-- target[phi] += w * lambdaB * C // add C, so w, lambdaB and C on stack.
 |-- C.pE(w * lambdaB * phi)
 |-- ... // add phi (etc, according to internal structure of C) onto stack

3.5
Storage Model

Page 16 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As each exposure projection function is called, a new frame is added to the stack. Each new frame stores
the variables holding the partial derivatives that will be accumulated into the target when the program
arrives at a leaf in the calculation tree. After that contribution to the total exposure has been accumulated
(the phi.pE line), the stack is unwound up to the next call (in this case, C.pE). The result is that
whenever an exposure is accumulated into the target (such as), only the variables that form the value
to be accumulated (, and) are stored in memory. They are then released before the calculation
proceeds. This efficient storage of internal variables is a natural consequence of traversing a tree of
exposure projection calls, illustrated in the present context in Fig. 2.

Fig. 2. An illustration of the calculation tree implicit in an exposure projection for the simple example
described in this section.

We note in passing that, as long as code authors do not take special pains to avoid stack storage, exposure
projection is threadsafe up to the shared ExposureTarget. If one target is used per thread then thread-safety
is recovered, if the targets are consolidated after each thread has terminated.

3.5
Storage Model

Page 17 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Having explored the structure at the heart of exposure calculation, what remains is essentially the
application of the ideas developed so far. This is not to dismiss such an endeavour, however. Indeed, one
of the unique differentiators of F3’s Universal Algorithmic Differentiation™ (UAD) is the completeness of its
implementation of analytic exposure.

A derivative’s valuation can be divided into calculations corresponding to two components (see Goyder
and Gibbs (2012)). The first is the Product, where the calculations performed are those encoding the rights
and obligations specified in the legal terms of the deal (we can regard portfolios, for our purposes here, as
trades with a simple nominal term sheet that aggregates the rights and obligations of it’s constituents).
The second is the Model, where the underlyings referenced by the derivative are modeled. In Subsec. 3.3
(Page 10), we examined part of the Product, but did not explore it very far. Except for the FX rate , we
certainly did not move into any part of the Model. In this section we conduct a more thorough examination
of the objects necessary to support the full analytic calculation of exposure for any trade. We begin at
the opposite end of the calculation to Product, move through the Model (deferring a full discussion of
calibration until Sec. 5 (Page 21)) and make contact with Products once again in Subsec. 4.3 (Page 20).

At the core of analytic exposure calculations is the pairing of a numerical value and its exposure
. The structure of is trivial - just a real number - and is an Exposure. The fundamental nature of this
association prompts an explicit name for this type of object.

Given a collection of Parameters, we can form new parameters by performing functional operations on
them. For example, consider a Parameter formed from the ratio of two other Parameters and .
Elementary differential calculus gives us the exposure projection for , as follows.

As we saw in Subsec. 3.4 (Page 13), the implementation of the exposure projection operation for would
consist of two calls to projectExposure, one on the Exposure for with a weight of and the
other on the Exposure for with a weight of , where have dropped the overall weight factor
supplied to the exposure projection for .

Definition 5. Parameter concept
A number, including its exposure - the pairing of a numerical value with its corresponding Exposure.

4.0
The Valuation Stack

4.1
Parameters

Page 18 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

This structure lends itself to the overloading of operators acting on Parameter instances which yields
source code that looks very similar to the mathematics that it encodes and hence would provide a high
degree of readability in the resulting program. However, it is important to avoid an overemphasis on
calculations implemented in terms of Parameters, because they represent the finest possible choice of
granularity for exposure projections. As explained at the end of Subsec. 3.4 (Page 13), the contribution of
each level of function composition to the final value accumulated into the part of an ExposureTarget for a
given market quote is stored as a separate entry in the call stack of the program. While in many scenarios
working exclusively in terms of Parameters may be adequate, in general it places too tight a constraint on
the ways in which exposure calculations may be optimized.

By choosing carefully where exposure projection is implemented, from the full range of objects that form
part of an entire valuation, we can select a level of granularity that is appropriate to the given application.
This yields optimized code both at runtime and during the development of the code itself. In fact, in F3,
in order to encourage an explicit choice of such granularity, we have deliberately avoided the temptation
of writing everything out in terms of Parameters by not overloading any of its arithmetic operators and
working in terms of a set of factory functions to perform common operations such as the ratio described
above.

A commonly used factory function is one that forms a Parameter by binding a function to a specific
evaluation point. We consider such functions explicitly in Subsec. 4.2 (Page 18).

Functional relationships are crucial to valuation. Common examples are:

1. Real-valued functions of a single real variable (that is one-dimensional functions), for example today’s
discount curve .

2. Real-valued functions of two real variables, for example, a volatility surface where is the
strike of an option and the expiry.

3. Real-valued functions of three real variables, for example an interest rate futures convexity adjustment
 where is the expected value of the forward rate, is the valuation time and is the

futures expiry time.

4. Complex-valued functions of a single complex variable, for example the characteristic function of a
price process.

5. Functions of no arguments. We have met these already in the form of Parameters.

The key aspect of such functional relationships is that, while dependence on their arguments is explicit, in
general they also have an implicit dependence on Parameters. Take, for example, the idealized discount
curve

4.2
Function Exposure

Page 19 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

We are making an explicit choice to regard as a one-dimensional function, when we could instead
work with the surface . We do this because the time-dependence is always there in a discount
curve, whereas the dependence on is only there if we choose the simple form of Eq. (12). We could
have modeled the discount curve differently, such as via log-linear interpolation (equivalent to piecewise
exponential decay, or constant forward rates):

where identifies the interval for which . In objects representing these functions therefore,
parameters such as form arguments to the constructor, while is supplied as an argument to its methods
or member functions.

This distinction between the arguments of a function and a function’s Parameters must manifest itself
in the calculation of exposure. We prefer a very clear manifestation whereby exposure to arguments is
handled in a separate part of the interface of a function object and exposure projection is augmented with
the value of the argument at which exposure is to be projected. For example, here is some pseudo-code
showing part of the exposure projection for the log-linear function of Eq. (13):

The pseudo-code above is for the case of a one-dimensional real function. Given the wide variety of forms
that functional relationships can take, it is useful to parametrize the exposure projection interface so it
can work for any form of argument and return value. The templates mechanism in C++ provides a suitable
mechanism for such a parametrization, as do Java’s generics and similar facilities in other languages.

Parameters and functions in their various shapes form some of the basic building blocks of valuation. Their
canonical application is in the encoding of the model parameters used to calculate derivatives’ value and
exposure, found (usually) by means of a calibration procedure. The management of relationships between
Parameters (see Gibbs and Goyder (2012)) and their calibration by a Model for efficiency and consistency is
described in Goyder and Gibbs (2012) and Gibbs and Goyder (2012) so we will not cover it here.

In F3, the object that performs the act of valuation, and therefore the main user of functions, is called an
Engine. Its role will be described in detail in Subsec. 4.3 (Page 20).

void projectExposure(double weight,
 double t, // need this argument for functions
 exposures_t& target) const
 // member function of a log-linear function class
{
 // extract the values for the interval for which s_i < t < s_{i+1}
 double s_i, s_i_plus_1, d_i, d_i_plus_1 = getValuesForThisInterval(t);
 // pre-calculate the exponent
 double p = (t - s_i) / (s_i_plus_i - s_i);

 // project exposure to d_i_minus_1 first. Extract the corresponding Parameter
 Parameter d_i_plus_1_param = getTheParameter(t);
 // then we can project
 d_i_plus_1_param.projectExposure(weight * p * std::pow(d_i / d_i_plus_1, p),
 target);
 // the rest follow similarly...
}

4.2
Function
Exposure

Page 20 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The act of valuation in F3 is performed by calling the function ValueProduct, whose arguments are

1. a Model providing model parameters,

2. a Product encoding the term sheet,

3. a ValSpec specifying the valuation approach

4. and a collection of valuation requests specifying the desired output.

The above information is sufficient to identify the calculation required to value the Product, in the context of
the given Model and under the given ValSpec. This calculation is contained within and managed by an object
called an Engine, which can be defined as follows:

Note that there is nothing in the above definition to constrain a valuation to a single currency. To
accommodate multi-currency trades, the value and exposure outputs from an engine take the form of
a map from currency to value and a map from currency to an ExposureTarget. That said, if the ValSpec
specifies a currency in which value and exposure may be reported, then such single currency reports may
be requested by means of appropriate requests in the fourth argument of ValueProduct.

The Model, when combined with the ValSpec, produces an object which is capable of emitting the
appropriate valuation Engine for any given Product. As such, we term it EngineSource and define it as
follows.

In practice, Engines divide into two forms, for the valuation of Products and Indices (an Index represents a
financial observable and is described in detail in Goyder and Gibbs (2012)). Consider the simple example of
a single cash flow of LIBOR paid at time with notional and accrual fraction whose present value in
closed-form is given by

Definition 6. Engine concept
A provider of, as a minimum, the value and first-order exposure of a Product, in the context of a given
Model and under a given ValSpec.

Definition 7. EngineSource concept
A mapping from a Product to the appropriate valuation Engine.

4.3
Engine Exposure

Page 21 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

where is given by Eq. (13) and the curve (evaluated at time , as appropriate for a payment at)
gives the expected value of LIBOR as

for some spread curve , where and denote the start and end of the corresponding borrowing
period. In terms of the valuation stack described in this section, this LIBOR payment is organized as follows:

 • A ProductEngine holds
 • and as floating point numbers,
 • the 1-d function and
 • a closed-form IndexEngine to calculate LIBOR, which in turn holds

 • the 1-d function and (after having checked the observation time to determine
whether a fixing might be required) simply evaluates it. The function holds two
other functions:

 • , formed by interpolating a set of Parameters and

 • , also formed via interpolation of Parameters.

While the example of a single flow of LIBOR is very simple, this hierarchy of Parameters nested inside
functions inside IndexEngines and ProductEngines applies to every Product, regardless of its complexity.
Engines, functions and Parameters all implement the Exposure interface, which means exposure can always
be projected down this valuation stack onto the Parameters.

Now, in the Libor cash flow example of Eq. (14), the Parameters are LeafExposures, which means that
we will report exposure to those Parameters, that is, they form leaves in the calculation tree. Reporting
exposure to model parameters is common during the development, testing and debugging of valuation
functionality, but in a production deployment such model parameters are typically found by means of a
calibration procedure, and so exposure would be projected through them onto market quotes. It is to this
task - evaluating the exposure of calibrated model parameters to market quotes - that we turn next.

In Sec. 4 (Page 17) we examined the components that comprise an analytic exposure calculation for a
generic derivative valuation and saw that such calculations are initiated at the level of an Engine which
encodes the trade’s payoff and which is implemented in terms of functions and Parameters (which can be
regarded as zero-dimensional functions).

5.0
Calibration

Page 22 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Therefore exposure is projected through Engines into functions and, eventually, into Parameters such as the
interpolation points of the discount curve .

In this section, we tackle the problem of projecting exposure through model parameters onto market data.
Model parameters are implied from market data by means of some form of calibration, in which a model’s
parameters are adjusted according to some algorithm in order to provide a “good enough” match with
market prices for some quoted instruments, when the instruments’ price is calculated with the model. In
fact, as described in Gibbs and Goyder (2012), this is an oversimplification. In general, calibration is the act
of comparing two different approaches to valuing the same collection of instruments, and it happens that
one approach, called the SourceValSpec, is often either trivial (for example, value to par) or matches an
established recipe (for example, options in the Black model). The other approach (TargetValSpec) is based on
the model to be calibrated.

Just as calibration is an inverse problem, so is the projection of exposure through a calibration. While the
details are specific to the calibration algorithm and metric used to compare with market prices, the general
approach benefits greatly from the linear nature of first-order exposure calculations; while inverting a
pricing calculation is in general intractable and requires a numerical approach, the linear nature of the
corresponding delta calculation ensures that we can perform an analytical calculation.

One common calibration algorithm is a root-search such as the Newton-Raphson method. All such methods
are based on the following metric:

where

and where

 • denotes the value of the instrument under the SourceValSpec

 • denotes the value of the instrument under the TargetValSpec

 • labels the collection of LeafExposures to which only the source valuation is exposed

 • labels the collection of LeafExposures to which both valuations are exposed

 • labels the collection of LeafExposures to which only the target valuation is exposed

 • labels the collection of parameters being found by calibration

5.1
Root Searches

Page 23 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

All -dimensional root-finding procedures using as a metric proceed by finding the value of
that results in vanishing (to within some suitable tolerance). This is equivalent to the conditions

for . Our aim is to find the form of the target parameters’ exposure implied by Eq. (18). To
proceed, we take the total derivative

Expanding the such condition using the chain rule, we obtain

where we have used the compact sum notation from Eq. (6). The set of these equations for
forms a determined linear system which we can solve for with standard techniques from linear algebra.

To illustrate, let us consider one of the simplest possible examples, once the canonical bootstrapping
problem but now largely of historical interest: constructing a discount curve from a series of swap quotes.
To simplify even further, let us ignore any cash deposit or futures quotes and leap straight to the 1 year
point implied by a quote for a 1-year vanilla interest rate swap. Given the interpolated discount curve
of Eq. (13), the value of the 1-year swap for unit notional is given by

where the 1-year annuity is given by

for a set of payment dates and associated accrual fractions , and the floating leg

 is given by

where the LIBOR rate is observed at time for payment at . Let this rate be modeled as

where and mark the start and end of the rate’s period and is a fixed and known (or assumed)
spread. This is a special case of Eq. (15), with a constant spread, which we write as (dropping the
-dependence from the notation).

5.1
Root Searches

Page 24 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The techniques described in this section do not require such simplifying assumptions - all of the more
complex bootstraps described in Gibbs and Goyder (2012) can be treated with the same approach - but
for the purpose of illustration assuming a constant spread affords brevity.

Our discount curve will be consistent with this market quote if this swap prices to par. In the language of Eq.
(17), we require that the SourceValSpec sets the value of every instrument to zero, and the target valuation
is as described above in Eq. (21). The parameter sets , are empty, consists of the two numbers and

 and the vector has just one element, . Eq. (20) becomes

whose solution is

We can therefore construct the Parameter and proceed to the second root-find calculation in the
bootstrap, based on the 2-year swap quote . By analogy with the above calculation, we can write down
the exposure of the second discount curve point as

in which we note the presence of . Such a recursive structure, with each newly determined curve point
depending on points obtained previously, is to be expected in a bootstrap calculation.

In Subsec. 3.4 (Page 13) we saw that every appearance of a differential such as in our equations
is encoded by an implementation of the Exposure concept in software. Such implementations may be
close representations of the above mathematical forms - for example, may calculate two weights
and perform two subsequent exposure projections as in Eq. (23) - or we may choose some alternative
implementation if appropriate.

This simple example reveals a circumstance in which an alternative implementation is in fact appropriate.
The recursive structure of bootstrap calculations means that whenever the target curve is involved in
any subsequent exposure projection, all of the projections like those given by Eq. (23) and Eq. (24) are
performed as long as the target curve is evaluated at a time later than 2 years. To avoid this inefficiency,
we can optimize the calculation by actually performing the exposure projection for immediately after
the root-find for that curve point has completed. In doing so, we cache the factors multiplying and

 in an ExposureTarget and implement the Exposure interface by storing the target and accumulating
any subsequent weights in the relevant parts of the target. In other words, instead of carrying around a
calculation tree, we flatten the exposure onto its leaves. This optimization is described in more detail in
Subsec. 7.1 (Page 34).

5.1
Root Searches

Page 25 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

There is one further subtlety in even this simple example. We have glossed over a distinction among
the parameters to which the value of the swap is exposed. While and are model
parameters, is not. It is part of the term sheet for the quoted instrument, which means that it is not
known to the EngineSource constructed from the Model and TargetValSpec - it instead comes from the
Product. Engines do not typically project exposure onto quantities in the Product, because they are fixed for
a given trade. Any calculation that requires terms like must insert them explicitly and each engine which
prices an instrument whose quote is intrinsic to the trade in this manner must provide access to the
relevant exposure factor -
in this case .

In contrast, other types of instrument are quoted by supplying their price directly. Options are notable
in this respect, even though the price is encoded as an implied volatility. We term the quotes for such
instruments extrinsic because the quote is not written anywhere on the term sheet - the quote is
not specified as part of the trade, but is simply the value of the trade itself. Each type of instrument
participating in a calibration that supports a full analytic treatment of first-order exposure must
advertise whether it is quoted intrinsically or extrinsically. A good rule of thumb is that instruments for
“curve-building”, whether in the vanilla rates, cross-currency or credit markets, are quoted intrinsically
and are used with a par SourceValSpec and the volatility calibrations applied to dynamic models use
a SourceValSpec chosen by convention, such as the Black formula, and are based on instruments quoted
extrinsically.

While a root-finding approach to calibration is typically found in building curves, for the calibration of
models for the dynamics of a market observable a minimization is more common. This is because the
systems of equations appearing such calculations are usually over-determined. Rather than pricing each
calibration instrument precisely to market (as in Eq. (16)), such calibrations minimize some metric that
measures the overall difference between model predictions and reality. The most common metric is that
induced by assuming a distribution of errors that maximizes their entropy (Jaynes (2003)):

where the parameter sets , , and are known and the elements of the set weight the
contribution of each instrument to the sum.

At the point in parameter space that minimizes the value of this metric, we have the conditions

for where is the number of parameters being calibrated.

5.2
Gradient Descent
and Global Optimizers

Page 26 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As before in Eq. (19), we can take the total derivative of each side of this equation to obtain

While somewhat voluminous, the terms in this equation, as ever with exposure calculations by their very
nature, are linear in the exposures themselves. Assuming that the functional forms involved are sufficiently
well-behaved to allow the order of differentials to be interchanged, the factor of in the first term
expands into

Given Eq. (25), we can expand and as

and

using the compact sum notation of Eq. (6). Given Eq. (29), we can apply the same procedure as for Eq. (28) in
order to express the factor of in the final term of Eq. (27) in terms of a projection onto and the
other parameters in the problem.

Thus, by repeating the above for each , we again have, in principle at least, a linear
system which can be solved for . However, it is one that contains both first and second derivatives
of the values of the calibration instruments which must be computed in order to project exposure
through calibration algorithms that minimize . Should the ideas covered so far be extended to cover
second-order derivatives? A straightforward generalization does exist, by just taking the second term
in the Taylor expansion for a portfolio’s value. However, the amount of work required to form second
order derivatives scales as the square of the number of risk factors, which renders such an act impractical
in general.

A more practical approach is suggested by Eq. (28), where we interchanged the order of the
total derivative of and the partial derivative with respect to . Given the ability to calculate

, as afforded by the exposure projection ideas described so far, we
can apply finite-difference calculations, varying by a small amount in each one, recalculating

 and evaluating the difference between the two resulting
ExposureTargets:

5.2
Gradient
Descent and
Global Optimizers

Page 27 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

In fact, given this ExposureTarget-based finite-difference approach, we can construct a far neater
algorithm by going back to the original condition Eq. (26) and interchanging the order of derivatives at
that stage. Instead of taking the total derivative of the equations Eq. (26) for , we can
evaluate, by finite difference, the derivative with respect to of the projected exposure of . In other
words, evaluate twice at two nearby values of , storing the results in an ExposureTarget each time,
and calculate the difference between the two. Note that we are applying the finite difference technique
to ExposureTargets, thereby forming second-order derivatives. The first-order exposure they contain is still
calculated by means of exposure projection.

From this high vantage point of differentiating , it is useful to group all the known parameters under a
single symbol , where the element may represent an element from , , or depending on the
value of , which ranges from 1 to , the sum of the sizes of , , and . Using this notation, we can
express the total derivative of as

At the minimum , the partial derivative of with respect to vanishes for each , giving

Defining the by matrix by

and the by matrix by

we have the following linear system:

where we assume any repeated indices are summed over the relevant range. The solution is

which allows the Parameter to be constructed for each . In passing we note that that the
Jacobian of any calibration based on a metric is

although in exposure projection it is never constructed explicitly as a matrix. Rather,
it is implicit in the exposure projector Eq. (30).

5.2
Gradient
Descent and
Global Optimizers

Page 28 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The ideas developed so far in this article provide a concrete solution to the problem of evaluating partial
derivatives of complicated functional relationships by decomposing them into simple components and using
the chain rule to assemble the pieces. A central assumption that underpins the entire development is that
the relevant functionality relationships are differentiable. However, many functional relationships found
within financial derivative contracts are not.

Even the canonical derivative - a European option on some stock struck at - has a value at expiry of

which is not differentiable at the point because its derivative with respect to suffers a
discontinuity, jumping from 0 to 1. We shall see shortly that any payoff that is conditional on some event
can be expressed using a step (Heaviside), function, which has no finite derivative at the step. We shall also
see that any payoff that involves sorting, such as mountain range options popular particularly in the early
90’s, introduces similar non-differentiability. How can we apply differential calculus to functions that are
not differentiable? It is this question that we address next.

The answer to this question is no different from the answer to the wider question of how singularities
and infinite sets are treated in any practical implementation, in any modeling context from black holes to
probability theory. We replace the singular or infinite system with a finite, parametrized one, such that it
approaches the true system as a limiting case. Applied to derivative payoffs, this amounts to replacing all
non-differentiable functions such as those described above with differentiable ones that tend to the original
functions in a controllable limit.

As an example, take the function implicit in the European option payoff Eq. (31) and
replace it with

The behaviour of this function is shown in Fig. 3.

6.0
Discontinuities

Page 29 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 3. Smoothed, therefore differentiable, maximum function that approaches a European option payoff in
the limit of vanishing smoothing zone

In the small region of size around (or), is a quadratic that matches both the value
and all derivatives of at the region’s boundaries . Inside the smoothing region, the values of

 and do not quite match, but remains differentiable and the discrepancy in value can be
made to be arbitrarily small by adjusting the parameter . In particular, we have that

Given the techniques described in this article, there is nothing to stop us treating the parameter controlling
this parametrization as just another variable to which exposure should be calculated. Outside the region

, there is no exposure, but inside, we have

6.0
Discontinuities

Page 30 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Having the exposure to available in our ExposureTarget is of immense value, because we can assess
immediately the extent to which the results of our valuation depend on the modeling assumption encoded
via Eq. (32). If the exposure is negligible, then the valuation is insensitive to the fact that the payoff has
a kink at and we can proceed in our application of the techniques described in this article without
worrying about the non-differentiability present in the problem.

If, however, we have a non-negligible exposure to , then the valuation is indeed probing the non-
differentiable region and is therefore dependent on the smoothing methodology we have chosen to manage
that non-differentiability. There is no automatic recipe to follow in such cases, although there are some
good general guidelines. One is to marginalize over several smoothing methodologies or at least compare
their results. Another is to perform an extrapolation based on a selection of values of , to estimate
the result of taking the limit Eq. (33), although this extrapolation introduces further modeling assumptions.

Regardless of the choice of strategy for dealing with significant dependence, it is always valuable to
possess the knowledge that a valuation result is model-dependent, and the degree to which this is so. It is
far better to understand that a number should be treated carefully, and know how carefully, than it is to use
the number while ignorant of potentially dangerous consequences of doing so.

We have shown one manner in which the discontinuity in gradient present in a European option payoff
can be smoothed. The general approach for other non-differentiable functional forms is more of the same
- every sharp edge must be smoothed and the true payoff can be approached as a limiting form of the
replacement. We now give two further examples of this. The first case arises when a condition is present in
the payoff. Consider, for example, a contract assigning rights or obligations contingent on some observable

 breaching a barrier during some time interval . The object of interest is the indicator
function , evaluating to true if the barrier was breached and false if not. If the two outcomes
resulting from each Boolean value are the payoffs and , then we write: “if then
else “, which is not differentiable.

To make progress, we first relax the constraint that is Boolean-valued, replacing it with a real-valued
function and interpreting values of 1 (or more) and 0 as true and false respectively. We then form
the expression

which is equivalent to the original conditional “if” expression when evaluates to 1 or 0. We then
apply the same approach as before, defining a smooth transition from 0 to 1 for over a range
controlled by a parameter, resulting in a differentiable expression and the same modeling considerations
as above. The same approach covers composite logical conditions by identifying Boolean and with
multiplication and or with addition.

While not particularly common, it is possible to write a contract based on the location of elements in an
ordered list. Mountain range options such as Himalayas that became popular in the early 90’s are perhaps
the clearest examples of such trades. In order to construct ordered lists, a collection of objects must be
sorted. More so than with logical conditions, it is far from clear a priori how sorting algorithms might be
rendered into a differentiable form. One solution to this problem follows from the fact that a sort can
in fact be expressed as a known number of comparison operations (Batcher (1968)), which in turn can be
expressed in the same manner as Eq. (34). Thus, sorting becomes a differentiable operation.

6.0
Discontinuities

Page 31 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

While the techniques described in this chapter can render a given discontinuous payoff differentiable, it
is another matter to construct a platform that guarantees that all sharp edges are smoothed. Such an
endeavour requires both an architecture and a development process that ensures a very high degree of
modularity and component reuse. As with the ExposureProjector interface (Subsec. 3.4 (Page 13)), it
is impractical to retrofit a pervasive smoothing capability - any successful implementation must be an initial
design consideration and achieve the status of a first class architectural feature.

The concepts of Exposure and ExposureTarget given in Sec. 3 (Page 6), together with the ideas that
describe how to project exposure through the valuation stack and calibrations (Sec. 4 (Page 17) and Sec.
5 (Page 21)) allow us to construct analytic calculations for the exposure of any derivative to all the market
risk factors on which it depends. The chains of projectExposure calls that implement the chain
rule of differential calculus can be visualized as an acyclic, but recombining graph. For example, consider
an interest rate swap valued using a discount curve bootstrapped with the toy model of Subsec. 5.1 (Page
22), but with quotes . Write its value as

where is the (annual) fixed coupon and the annuity is given by

for a set of payment dates and associated accrual fractions , and the floating leg
is given by

where the LIBOR rate (whose tenor is) is given by Eq. (22). Then, the exposure projection can
be visualized as the tree shown in Fig. 4. Each box displays one of the series of functional relationships
present in the calculation of the swap’s value, starting with Eq. (35) and descending through to the
log-linearly interpolated discount curve of Eq. (13). The connecting arrows indicate the calls
to projectExposure that encode each application of the operation. Thicker lines denote
a multiplicity of such calls, while thinner lines denote a single call.

7.0
Optimizations

Page 32 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 4. Calculation tree for the exposure projection of a vanilla LIBOR swap.

7.0
Optimizations

Even in Fig. 4 we are confronted by considerable complexity. We have ignored exposure to the set of
times and have not drawn the many arrows that capture the exposure of each discount factor to all
the quotes that mature before the corresponding cash flow. For typical portfolios, such calculations trees
become vastly larger, and the larger they get, the more expensive it becomes to calculate exposure (though
the cost of calculating value also increases, with the result that an analytic approach still affords a dramatic
speed increase over bump-and-grind for any realistic number of quotes). When the calculation tree exhibits
certain types of structure, it is possible to perform optimizations that leverage that structure. In the
following sections, we describe a small, indicative set of such optimizations.

Page 33 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The first optimization we consider is one we touched on in Subsec. 5.1 (Page 22). The leaves of the
calculation tree shown in Fig. 4 consist of a set of market quotes, (and the spread which we
ignore in this section for brevity). The discount curve was implied by this set of quotes via the same
root-finding calculation, with log-linear interpolation through a set of points , that was described in
Subsec. 5.1 (Page 22). The associated exposure calculation is given by Eq. (23) and Eq. (24) where in the
latter equation, we see that is exposed to changes in both (directly) and (via). This structure can
be seen in Fig. 5 for the first five such quotes and discount factor points.

Fig. 5. Graph showing the recursive structure implicit in the dependence of bootstrapped
discount factor curve points on market quotes.

7.1
Flattening

Page 34 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

This is a recursive structure; each discount factor interpolation point projects exposure onto and
onto for . The cost of projecting exposure onto is , but in many applications (such as
valuing a series of cash flows) we require the exposure is projected in a loop from 1 to , adding a further
power of to the computational complexity.

This scaling can be reduced to (constant time, or if in a loop over) by flattening the
calculation tree, so that it resembles Fig. 6.

Fig. 6. Graph showing the dependence of bootstrapped discount factor curve points on market quotes after
flattening the tree to remove any recursive structure.

This flattening can be achieved by changing the implementation of ‘s exposure projection operation to
one which is based on exposure values for the leaves of the tree

stored in an ExposureTarget, say . When exposure is projected onto a new target , the values
from are added into the corresponding locations in . The partial derivatives in Eq. (36) can be
evaluated by simply asking to project its exposure onto . If this is done as soon as the exposure
calculation for (described in Subsec. 5.1 (Page 22)) is complete, then a full traversal of the recursive tree
of Fig. 5 is never performed.

7.1
Flattening

Page 35 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The idea of exposure projection described so far is one that avoids the need for explicit allocation of any
storage for the intermediate Jacobians at each node in the calculation tree. Rather, as described at the end
of Subsec. 3.4 (Page 13), the required storage is that for only one path from root to leaf as the calculation
tree is traversed, and is on the program stack. The top-level exposure projection operation starts with an
empty ExposureTarget, makes a single call to projectExposure and results in a full ExposureTarget
whose contents can then be queried and reported.

There are, however, times where this one-branch-at-a-time approach is suboptimal, and instead we want
to descend only to a given level in the calculation tree, stopping short of the leaves each time. In such
scenarios we wish to break the chain that connects root to leaf at a key intermediate point or points, and
then project exposure onto those intermediate points, thereby deferring the full projection until some later
stage.

An important example of such a scenario is Monte Carlo simulation, where the value of a derivative is
approximated by summing over samples from its risk-neutral distribution, generated by passing samples
of the underlyings from their joint distribution through the contract’s payoff function. First-order exposure
may be approximated in the same way. For each iteration (path) in the simulation, exposure can projected
onto an ExposureTarget and by doing so, the average value of each exposure will be accumulated. In
order to illustrate how a full exposure projection is suboptimal here, consider the toy example of a vanilla
European call option valued in the Black model, but in a Monte Carlo simulation (with static interest rates).
Let the present value of the option be

7.2
Underlying Projectors

Page 36 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

where is the of samples from the risk-neutral price distribution. The payoff for the sample can
be written as

where is the settlement time for expiry at , is the discount curve, the option is struck at and
state variable is the value of a time forward contract on the underlying as seen at . In the Black
model, we can write the state variable as

in terms of the two model parameters , today’s value of the forward and , its realized volatility
at together with , the sample drawn from a standard normal distribution . Assume that
we model by interpolating a collection of quoted volatilities (corresponding to the strike) linearly
in variance:

where is the element of , for expiry . Let the static part of our model be constructed as follows.
Assume some dividend structure incorporating both a continuous dividend model parametrized
by a set of quantities (such as a single dividend rate, or term structure of such rates) and a discrete
dividend specification based on a set of quantities (such as the expected absolute or relative dividend
amounts). Then we can express the funding curve for the underlying as

without going further into the precise functional form. Our model for the forward curve is therefore

given the underlying’s spot price . Lastly, assume that our discount curve is that described in
Subsec. 5.1 (Page 22) and so depends on the quotes .

As shown in Eq. (37), the value (and therefore its exposure) calculated on each iteration is a function
of the volatility model through its parameters and , and a pseudo- or quasi-random number
generator. This means that the exposure values that are projected down the valuation stack are different on
each iteration for the payoff and state-variable modeling layers, but the exposure of the model parameters
to market data is not (Eq. (38) and Eq. (39)). The model is calibrated before the simulation, with the result
that the relationship between the model parameters and the input market data remains fixed for all
iterations. This structure is summarized in Fig. 7 which shows the levels through which exposure must be
projected in such a valuation, from at the top through to , , , and at the bottom.

7.2
Underlying
Projectors

Page 37 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 7. The valuation stack for the toy example of a European call option valued with a Monte Carlo
simulation, showing the separation between per-iteration quantities and those that are constant
across iterations. This section describes the capability to split the total exposure projection along the
horizontal boundary shown by dashed line, delaying the full projection until later.

The computational expense of projecting exposure through a calibration is a function of the complexity of
the functional relationship that encodes the Jacobian between the model parameters and the market data.
It is not a function of the weight supplied to the projectExposure call that initiates the projection.
We would therefore waste effort by projecting exposure through the entire valuation stack on every
iteration. Instead, while performing each iteration, we should treat the model parameters as the leaves of
the calculation tree. Once the simulation is over and the (both value and exposure) contribution from all the
iterations has been accumulated, we can complete the projection through the calibration.

In order to achieve this separation we require the ability to work with Jacobians directly. This approach is,
in a sense, the opposite of exposure projection, which emphasizes root-to-leaf traversals of the calculation
tree, whereas each column of a Jacobian pertains to the boundary between one node and its children.

7.2
Underlying
Projectors

Page 38 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

struct UnderlyingProjections : public Exposure
{
 // Fill a vector of partial derivatives with respect to immediately underlying variables
 virtual partialDerivatives(std::vector< double >& target) const = 0;
 // Provide access to the objects which can project exposure onto the underlying variables
 virtual const std::vector< const Exposure* >& exposureProjectors (void) const =
 // Implement full exposure projection in terms of the above interface
 virtual void projectExposure(double weight,
 exposures_t& target) const;
};

In the stack shown in Fig. 7, exposure projection operates vertically but Jacobians are horizontal,
connecting each layer to the next. For scalar-valued objects, this Jacobian capability is a specialization of
the Exposure concept, because exposure projection can be implemented in terms of it. The following code
provides a schematic example of what such an interface could look like.

If an object implements this interface, then the two pure virtual member functions
provide access to the collections and in the full exposure projection

which can be implemented by looping over the exposure projectors returned
by exposureProjectors calling each with a weight given by the corresponding element of the vector
filled by partialDerivatives.

With an explicit Jacobian capability like that above, you can avoid needless per-iteration repetition of
exposure projection through a calibration in a Monte Carlo simulation, which is just one of many possibilities
for saving computational effort. Another important consequence of the ability to separate a group of
levels in an exposure projection stack from another is to reduce the payload size in distributed and cloud
computing scenarios. When transporting the information to run a subset of Monte Carlo iterations over
a network, it is important to minimize the overhead of distribution. This means that we want to send the
bare minimum information for a worker node to calculate. Such a worker node does not need to know
anything about calibration, other than the resulting model parameters and how they are used to generate
the relevant distributions.

Later, in Sec. 8 (Page 43), when we compare EP with alternative approaches available in the literature,
we will see that those alternative approaches work directly in terms of Jacobian matrices (or vectors
for scalar-valued functions, as above). The partialDerivatives member function provides
access to this vector for a given node in the calculation tree. In contrast, its companion member function
exposureProjectors is new, as is the associated concept of exposure projection as defined in
Definition 4.

In effect, slicing calculation trees (such as that shown in Fig. 4) horizontally is a fundamental feature of
alternative approaches found in the literature. To us, however, it is a suitable approach in
some situations only and therefore available as an optimization, but important to separate
from the fundamental abstractions such as Definition 4 that underpin any generic
approach to analytic exposure calculation.

7.2
Underlying
Projectors

Page 39 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

As our third and final illustrative example of how we can optimize exposure projections whose
calculation trees fall into specific structural categories, consider a scenario where, as in Subsec. 7.2 (Page
38), we wish to query an object for an explicit list of partial derivatives and projectors.

Suppose that this object was an Engine that calculated the price of a barrier option by propagating the
payoff at each time backward in time by means of an expectation over the underlying distribution’s
transition density (typically performed in Fourier space, see Cherubini (2010)). The number of backward
propagations is equal to the number of times that a possible breach of the barrier is observed and can
be quite high. Even a one-year option monitored daily requires approximately 250 observations of
the underlying.

Each observation of the underlying requires an evaluation of the relevant model parameters, which in turn
are likely to have a term structure. The model parameter term structures, if coming from a calibration, will
have been calibrated to market quotes, but the number of maturities per year of suitable liquid calibration
instruments is of the order of one, not hundreds.

Fig. 8 gives a schematic illustration of this scenario, where the calculation tree flares out when a large
number of observations of underlyings and model parameters is made, but tapers back in when the tree
recombines on the relatively small number of interpolation points in the term structure for each model
parameter.

Fig. 8. Illustration of the flaring out of an exposure projection tree when a large number of observations
are made of an underlying, resulting in a large number of evaluations of a curve, formed by interpolating a
much smaller number of points.

7.3
Peeking Through

Page 40 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

A Fourier-space backward propagation calculation such as our current example works on a set of samples
of the underlying. In order to achieve sufficient accuracy, it is usually necessary to adopt a sampling
granularity that results in the Fourier integral being performed over hundreds or thousands of values
of the integrand. When combined with hundreds or thousands of elements in the vectors populated by
the UnderlyingProjections interface, the number of distinct projectors can approach .

The key to the “peek-through” optimization is the observation that there is nothing in
the UnderlyingProjections interface that requires an object to report its exposure to
its immediate underlyings. The only requirement is that it can split the calculation stack at some level and
provide the corresponding list of partial derivative values and exposure projectors.

To provide a sketch of how this idea works in the context of Fig. 8, write the barrier pricing engine’s
calculation of the option price as

where the model parameters are obtained by evaluating a term-structure over a large
collection of times ,

where is a small collection of interpolation points. We are free to relegate the to the status of
an internal implementation detail and instead have the UnderlyingProjections interface work in
terms of

where the partial derivative values are calculated internally as

This ability to group together an arbitrary number of levels in the calculation stack is another example of
the kind of optimization that makes the difference between an interesting academic topic and a mature
production implementation of an analytic exposure computation platform.

Some fundamental techniques for the analytic computation of partial derivatives have been known
among computer scientists for several decades (Rall (1981)), Griewank (1989)), in the form of Automatic
Differentiation (AD). Correspondingly, these techniques have been applied to problems in quantitative
finance for many years; the analytic computation of discounting risk was commonplace in sell-side
institutions in the mid-90’s.

8.0
Automatic Differentiation
and Exposure Projection

Page 41 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Due to the highly applied nature of quantitative finance, key innovations are almost always monetized
before being published, with many implementation details remaining permanently beyond the realm of
academic literature.

The application of AD to financial problems has accumulated, however, a body of literature. The
popularization of AD in finance began with Giles and Glasserman (2006). Since then, a range of papers
describing AD applied to a collection of specific financial problems has appeared (see Homescu (2011)
for a useful review). In this section we compare EP to AD and find that many of the ideas presented in
this article are new; EP is an alternative approach to those available in the AD literature, with several
practical advantages. Where there is common ground it is that both methods apply the chain rule of
differential calculus, which is a necessary similarity between AD and any alternative method that
differentiates functional relationships in software.

Before examining the advantages of EP in Subsec. 8.2 (Page 45), we conduct a very brief survey of AD.

As described at www.autodiff.org, Automatic Differentiation (AD) is a set of techniques based on the
mechanical application of the chain rule to obtain derivatives of a function given as a computer program.

Consider the function formed by composing the functions and
 such that

for , and . The chain rule allows us to decompose the Jacobian of
as follows:

where and are the Jacobians of and respectively. There is a straightforward generalization to
an arbitrary number of function compositions, so we choose a single composition here for convenience
and without loss of generality. Suppose that a computer program contains implementations of and
explicitly, with formed implicitly by supplying the output of to a call to .

AD defines two approaches to computing , forward (or tangential) and reverse (or adjoint) accumulation.
In forward accumulation, is computed first, followed by . In other words, the calculation tree for
operation performed by is traversed from its leaves to the root. The computational cost of such an
approach scales linearly with the number of leaves because the calculation needs to be
“seeded”, that is repeatedly evaluated with on the

8.1
Brief Summary
of Automatic Differentiation

http://www.autodiff.org/

Page 42 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

accumulation. This is well-suited to problems where , because it allows all rows in to be
computed simultaneously for the accumulation. Such problems are so hard to find in the context of
financial derivative valuation that it is very rare to read of any application of forward accumulation in the
literature.

In contrast, reverse accumulation is most efficient when and is closer in spirit to the idea of
exposure projection presented in this article. It consists of two stages - a “forward sweep”, where the
relevant partial derivatives (termed “work variables”) are formed, and then a “backward sweep” where
the relevant products of partial derivatives are added into each element of and , which can then be
multiplied to obtain the full Jacobian .

In the AD literature, one finds main two approaches to implementation, whether forward or reverse
accumulation, for the function . Both approaches emphasize the problem of adding a differentiation
capability to an existing codebase that computes the value alone. The first method, source code
transformation is based on a static analysis of the source code for the function . New source code is
generated for a companion function that computes , then both are compiled (or interpreted).

The second method, operator overloading, requires a modern language such as C++ or Java where basic
types can be redefined and operators can be overloaded, so that existing code that performs these
operations will trigger the corresponding derivative calculations also. Forward accumulation is easier
to implement in an operator overloading approach than reverse. A common technique for reverse
accumulation is to generate a “tape” that records the relevant set of operations, then interpret that tape in
order to obtain the desired derivatives.

Both approaches suffer from high storage costs and long run-times, with the result that numerous
implementation techniques have been devised to mitigate the performance challenges inherent with AD
and it remains an active area of research.

AD and EP both leverage the chain rule of differential calculus to compute derivatives analytically. Given
that the chain rule is just the name given to the correct mathematics for differentiating nested functional
relationships, it is not surprising that they share this common link.

In a modern programming language, once a numerical algorithm’s data types are substituted with custom
types supporting AD and the core operators are overloaded for those types, differentiation is truly
automatic - the numerical algorithm’s code remains unchanged and no further work is needed to obtain
its derivatives. The penalty for this automation, however, is performance, with challenges in both storage
and computational time. In contrast, EP is not automatic in this sense - it explicitly requires derivatives to
be implemented for each Engine, function and Parameter used in the calculation. The simple requirement
that the Exposure interface is implemented allows quants and developers to choose the optimal granularity
for the problem at hand, yielding implementations that are efficient in both memory and time.

8.2
Comparison with
Exposure Projection

Page 43 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

In EP, further optimizations are possible, such as flattening and peek-through (see Sec. 7 (Page 31)), that
facilitate the kind of fine-tuning of exposure calculations in a financial context that one expects to see in
an approach that itself is optimized for the kind of problems found in financial derivative valuation and risk
management. Like the conceptual framework of exposure projection described in Subsec. 3.4 (Page 13),
these optimization are new.

Many AD tools are available which retrofit a differentiation capability to existing code. Whether based on
operator overloading or source-code transformation, these tools are forced to work at the granularity of the
expressions in the existing code. The choice of granularity available in EP arises because it was conceived
before development started on F3 - it was built in from the start - and both object-oriented programming
techniques and a careful development process ensure that all future valuation functionality supports EP.

Much of the AD literature describes techniques for computing partial derivatives (exposures) to a known
number of independent variables (risk factors). This leads to exposure calculations whose structure is
constrained by the set of quotes for a given valuation and results ultimately in systems that calculate
exposure to a fixed number of quotes, or specific types of quotes only. In contrast, EP not only computes
exposure to the relevant set of risk factors, but it also selects that subset of relevant risk factors from
the total set of market observables in the Model, describing them in terms of the natural information
content of financial market data, as described in Subsec. 3.1 (Page 6).

Papers in the AD literature almost exclusively consist of applications to specific problems, of calculating
exposure to known risk factors in the context of a specific model and valuation methodology. A handful
of papers conduct a more general discussion and, at the time of writing, a growing number of banks
have publicly indicated that they are currently applying AD techniques in some systematic manner in
their next-generation library development. This article is the first to introduce ideas that facilitate a truly
generic implementation of analytic exposure calculation - a guarantee that analytic exposure is available for
every valuation. In addition, we provide an example, in the form of F3, of a mature implementation.

One of F3’s hallmarks is its generic nature - any derivative or portfolio can be valued under the joint
distribution for an arbitrary set of underlyings (Gibbs and Goyder (2013)). With its implementation of EP,
Universal Algorithmic Differentiation™ (UAD), the same is true of analytic exposure computation. The
result is an analytic exposure capability that is truly universal, in its comprehensive coverage and stable,
mature implementation. Every valuation, in every model and for every valuation method, from closed-
form though backward propagation in Fourier space to hybrid Monte Carlo, has EP. Every sharp edge
is smoothed, from a simple through conditions to sorting operations. EP is available for all types of
risk factors and in every valuation output, whether individual trades, portfolios or CVA on any type of trade.
A rich set of applications that leverage analytic exposure computation, from hedging notionals, calculating
hedging costs to generic gamma/ convexity and profit-and-loss attribution, is available. At every level, from
end-user functionality to low-level debugging and testing parts of the API, EP output is available.

8.2
Comparison
with Exposure
Projection

Page 44 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

In this section, we show two applications of UAD. Both are based on the same underlying portfolio of
about 250 derivative trades and all calculations are done on a Desktop PC with an Intel Core i7 CPU.
Approximately 80% of the trades are 10-year vanilla swaps paying 3-month USD Libor against a semi-
annual coupon. The remaining 20% comprises swaptions, CDS, FRA, vanilla EUR swaps, USD-EUR cross-
currency swaps, FX forwards and equity options.

In this example we demonstrate the performance of F3’s UAD in a closed-form valuation setting by
performing the calculations necessary to hedge our portfolio’s market risk. This market risk comprises:

 • the equity’s spot price, funding rate, expected dividend term-structure and each point in its volatility surface

 • each cash rate, futures price and swap rate in each currency

 • each point in the term-structure of volatility chosen for the futures convexity adjustment, in each currency

 • each tenor basis spread in each currency

 • each swaption quote used to construct the volatility cube

 • each CDS quote used to build the reference entities’ survival curves, and each point in the recovery rate term
structure

 • the FX spot quote

The total number of values in this set is 411. Fig. 9 shows the time taken to calculate the exposure to each of
these numbers using UAD and compares it to a finite difference calculation. In this particular example, UAD
yields about a factor of 600 speed-up. The speed improvement afforded by UAD depends, naturally, on the
content of the portfolio being valued and the modeling assumptions, and corresponding market data, used
for the valuation. In practice, for most practical problems, it ranges from about a factor of 10 to a factor of
10,000.

9.0
Applications

9.1
Hedging a
Derivatives Portfolio

Page 45 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 9. Time taken to calculate the exposure of a cross-asset, multi-currency portfolio of 242 vanilla
trades to every quote on which the pricing depends, using F3’s Universal Algorithmic Differentiation™
(UAD, left) and by finite difference (Bumping, right). Note the logarithmic scale on the y-axis. In this
particular example, UAD yields
about a factor of 600.

The report generated by UAD for this portfolio provides a very detailed view of its risk profile and contains
too much information to display here in its entirety. However, we can explore some specific areas to get a
feel for the rich nature of the information content. For example, Fig. 10 shows the effect of a percentage
point move in each quoted option volatility for the equity. Such an exposure surface is provided by UAD for
each equity underlying the derivatives in a portfolio.

9.1
Hedging a
Derivatives
Portfolio

Page 46 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig. 10. Change in portfolio value resulting from a one percentage point change in quoted option volatility
for the underlying equity. UAD gives the exact partial derivative of portfolio with respect to each quote,
which is then scaled by 1% to form the equity vega surface shown here. To obtain the overall vega
value resulting from a parallel 1% shift in all quoted option volatilities, we simply sum the values shown in
this plot.

While the fundamental quantity calculated by UAD is exposure; the partial derivative of portfolio value with
respect to a given quote, it is often more useful to present the information in terms of a corresponding
hedge. Given the exposure of the portfolio’s value to the quote , this is a straightforward
calculation. Suppose is the par rate of an interest rate swap with annuity and floating leg value (per
unit notional), following the notation of Sec. 7 (Page 31). We seek the notional amount of this swap that,
when combined with our portfolio, eliminates the exposure to small moves in . We require

and so

Volatility surface exposure
9.1
Hedging a
Derivatives
Portfolio

Page 47 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

UAD provides for each swap, and appropriate measures for other instruments such as the required
number of futures contracts. Some of these values are displayed in Fig. 11 for the current example portfolio,
where we can see that our exposure to USD curve instruments is dominated by the T/N and 2-month cash
deposit rates, and the 10-year swap rate.

Fig. 11. Portfolio exposure to USD curve instruments, given in terms of the equivalent hedge.

The example shown here is representative, not exhaustive. UAD allows the calculation to scale to large
portfolios, complex modeling assumptions and different valuation methodologies such as Monte Carlo and
backward evolution approaches. In Subsec. 9.2 (Page 51) we show UAD at work in a Monte Carlo valuation.

9.1
Hedging a
Derivatives
Portfolio

Page 48 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

We now switch to a Monte Carlo valuation setting and calculate the Credit Value Adjustment (CVA) for this
portfolio. Then we apply UAD to the CVA itself, to study its response to market fluctuations and address
the additional market risk that it introduces.

The CVA of the portfolio V can be expressed as

where is the recovery rate at time , the value at time of the remainder of the underlying
portfolio whose value is , the appropriate numeraire factor (for example
in the -forward measure) for a cash flow at time , the time of counterparty default and
is a default indicator, evaluating to 1 if lies between time and and 0 otherwise. In order to
proceed numerically, it is necessary to approximate this time integral. Subdividing into time intervals

 which are sufficiently small such that any variation of within them can be neglected,
the integral is

where

Eq. (44) gives the rate of loss over the time interval given that a credit event occurred within it and Eq.
(43) describes the payoff of a product whose value is the loss that would result from counterparty default
occurring within the time interval. The expected value of this product is the contribution of the given
time interval to the total integral in Eq. (41) which spans the length of the underlying product.

In this example, we calculate not only CVA, but the market risk of CVA for each of the several hundred
quotes on which it depends. For the market quote , the exposure of CVA to it is defined as

9.2
Hedging CVA

9.2.1
CVA Trade Structure

Page 49 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

where is given by Eq. (42). That CVA is a tradeable quantity is evident from Eq. (41), which expresses
a just another derivative valuation, albeit a complex one. The derivative product comprises a portfolio of

 options on the remainder of the portfolio V, scaled by a loss-given-default observable. F3 is capable of
describing trades at a very generic level, which means that the necessary core operations are available and
work with arbitrary underlying trades. These operations are:

1. Portfolio: form a trade that is the sum of others, as in Eq. (42).

2. Date restriction: form a trade by imposing a time window on underlying trade. If the time
window extends beyond the latest payment in the underlying trade then we obtain the
remainder .

3. Scaled cash flows: form a trade from another by scaling each cash flow amount by an
observable. If the observable is the loss-given-default from Eq. (44) then we obtain default-
contingent flows.

4. Conditional Choice: Form a trade that represents the right to choose between two underlying
trades at some future time. If the second trade is a null trade that is without value, then this
yields the positive part of the first.

In order to calculate CVA, we need to evaluate each of the expectations in Eq. (42). It is common practice at
this point to make various assumptions about the lack of correlation among the set of state variables in V
and the credit variables and , in order to simplify the valuation. Furthermore, it is typical to
rework the implementation each time a modeling assumption changes, even though the CVA expressions
above do not depend on modeling assumptions, except through the details of the expectation operator

.

In contrast, F3 separates the description of what is valued (trades) from how it is valued (modeling).
Changing modeling assumptions across the full spectrum from highly simplified uncorrelated treatments to
a complex hybrid simulations becomes a matter of configuration, not implementation. In our example, we
have the following state variables:

5 USD interest rate term structure

6 EUR interest rate term structure

7 The USD-EUR FX rate

8 One equity asset

9 The counterparty’s survival

We choose low-dimensional Hull-White models for each interest rate term-structure, a
lognormal assumption for the FX rate and the Heston model, with time-dependent parameters, for the
equity. While we are free to model wrong-way risk by choosing a dynamical model for the survival of
the counterparty, in this example we neglect its contribution by choosing static credit model, thereby
decoupling the dynamics of survival from the rest of the state variables.

9.2.2
Modeling and Valuation

Page 50 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

The calculation is performed by Monte Carlo simulation, using a technique called Automatic Numeraire
Corrections (Gibbs and Goyder (2013)) in order to reconcile the different measures in which each marginal
distribution is simulated. The resulting joint distribution is self-consistent and accounts for the correlation
between the four state variables in the simulation. Each conditional choice arising from the in Eq.
(43) is processed via a backward Monte Carlo algorithm, which is general enough to handle essentially
arbitrary trades within the underlying portfolio. For example, the European swaptions in portfolio V could
be replaced with Bermudan swaptions, or some callable Libor exotic, or even exotic hybrid trades, and the
same valuation instructions would yield the CVA calculation appropriate for the modeling assumptions
described above.

We used a Sobol quasi-random number generator and found that iterations were sufficient to
achieve convergence in this example. Owing to an additional volatility cube and other modeling parameters,
including correlations between the Brownian motions driving the simulation, the number of quotes to which
the CVA is exposed was 542. The computation time for calculating CVA was about 10 minutes on a desktop
machine. Consequently, by employing traditional finite difference methods, exploring the degree to which
the CVA depends on local changes in each of the 542 market risk factors, in order to find the relevant set, is
impractical without significant computational resources and implementation effort to distribute the work.

In practice, intuition is employed. A CDS on the counterparty, if one exists, is the canonical hedge for CVA.
However, there is no fundamental rule that says CVA is a stronger function of the counterparty’s CDS
spread than other market risk factors - in practice, it depends on the underlying portfolio. With F3’s UAD, it
is not necessary to fall back on intuition because calculating the exposure of CVA to each of the 542 quotes
takes just 4 times as long as the valuation of CVA. The resulting risk report can then be sorted in order of
decreasing exposure size to reveal which quotes have the strongest influence on changes to CVA. Fig. 12
shows the first 50 of these 542 exposures. In this example, we can see that although the counterparty’s
CDS spreads rank in the top 20, the exposure is dominated by the US vanilla rates market.

9.2.2
Modeling
and Valuation

Page 51 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Fig 12. Ordered list of the 50 highest values of the market risk of our example portfolio. Each bar is (the
logarithm of the magnitude of) the partial derivative of CVA with respect to an individual market quote.
The bars have been grouped into categories, shown by color. The entire set of 542 exposures, of which
the top 50 is shown, took approximately 4 times as long as the valuation of the CVA itself.

We introduced Exposure Projection (EP) in Sec. 3 (Page 6), a new method for the fast calculation of
first-order exposure that yields several advantages over existing methods in the literature. Existing
approaches - notably (adjoint) Automatic Differentiation (AD) - suffer from challenges in both storage
and run-time performance, when managing large collections of exposures to many different factors. In
contrast, implementations of EP (such as F3’s Universal Algorithmic Differentiation™) naturally induce
an efficient storage scheme within a program’s stack and afford opportunities for optimization. The
resulting implementation exhibits efficiencies in both storage requirements and speed.

Relative size of CVA exposure to 50 quotes

10
Conclusion

Page 52 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

Despite the simplicity of the underlying mathematics, implementations of AD remain focused on specific
applications, calculating some risk factors for a particular model or class of models, or for a specific set
of trades, or both. With EP, however, it is possible to address the issue of analytic exposure calculation
generically - once for all combinations of trade types, models and valuation methodologies. To this end,
we focused on the principles underlying the construction of a generic valuation platform in which EP
takes center stage at all levels of the valuation stack, from Parameters at the bottom through functions to
Engines at the top. The generic form of the exposure of calibrated model parameters to market data was
given in Sec. 5 (Page 21), a treatment of discontinuities, including those present in sorting algorithms was
covered in Sec. 6 (Page 28) and an indicative sample of the types of optimization that are possible in EP was
presented in Sec. 7 (Page 31). Finally, in Sec. 8 (Page 43), we conducted a comparison of the salient aspects
of AD with EP and listed a number of ways in which EP represents an advancement over the state of the
art.

F3 is a generic valuation platform that contains a complete implementation of EP that draws on all of
the ideas presented in this article, called Universal Algorithmic Differentiation™ (UAD). With UAD, the
entire exposure of virtually any derivative or portfolio can be calculated in any model and in under any
valuation approach. In Sec. 9 (Page 47) we demonstrated the application of UAD to a multi-currency,
cross-asset portfolio of about 250 trades and calculated its exposure to over 400 quotes in 1 second.
We then demonstrated UAD in a hybrid Monte Carlo setting, calculating over 500 hedge factors for the
portfolio’s CVA.

The authors are grateful to Lois Patterson for help in reviewing the manuscript and Geoff Lynch, Anindya
Mukherjee and Glen Goodvin for help in preparing the examples.

11
Acknowledgements

Page 53 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

[1] Gibbs and Goyder (2012), The Past, Present and Future of Curves, Technical Article, FINCAD,
http://www.fincad.com/resources/resource-library/whitepaper/past-present-and-future-curves-
fundamentals-modern-curve

[2] Cherubini (2010), Fourier Transform Methods in Finance, Wiley

[3] Goyder and Gibbs (2012), Optimal Architecture for Modern Analytics Platforms, Technical Article,
FINCAD Inc., http://www.fincad.com/resources/resource-library/whitepaper/technical-paper-
optimal-architecture-modern-analytics

[4] The Standard Template Library, ISO/IEC 14882:2003(E) Programming Languages - C++ Sec.17-27

[5] Jaynes (2003), Probability Theory, Cambridge University Press

[6] Batcher (1968), Sorting Networks and their Applications, in Proc. AFIPS Spring Joint Comput.
Conf., 307-314

[7] Rall (1981), Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer
Science, Springer, 120

[8] Griewank (1989), On Automatic Differentiation, Mathematical Programming:
Recent Developments and Applications, Kluwer Academic Publishers

[9] Giles and Glasserman (2006), Smoking Adjoints: fast evaluation of Greeks in Monte Carlo
Calculations, Risk Magazine, (19:1), 92-96

[10] Homescu (2011), Adjoints and automatic (algorithmic) differentiation in computational finance,
Social Sciences Research Network

[11] Gibbs and Goyder (2013), Automatic Numeraire Corrections for Generic Hybrid Simulation,
Technical Article, FINCAD, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2311740

Bibliography

http://www.fincad.com/derivatives-resources/white-papers/curve-building-past-present-future-of-curves.aspx
http://papers.ssrn.com/sol3/papers.cfm%3Fabstract_id%3D2311740

Page 54 of 54fincad.com UNIVERSAL ALGORITHMIC DIFFERENTIATION™

FINCAD makes no warranty either express or implied, including, but not limited to, any implied warranties
of merchantability or fitness for a particular purpose regarding these materials, and makes such materials
available solely on an “as-is” basis. In no event shall FINCAD be liable to anyone for special, collateral,
incidental, or consequential damages in connection with or arising out of purchase or use of these materials.
This information is subject to change without notice. FINCAD assumes no responsibility for any errors in
this document or their consequences, and reserves the right to make improvements and changes to this
document without notice.

(c) FinancialCAD Corporation. All rights reserved

F3™ (Patented Technology), UAD™, FinancialCAD® and FINCAD® are registered trademarks of FinancialCAD
Corporation. Other trademarks are the property of their respective holders.

Every effort has been made to ensure the accuracy of this document. FINCAD regrets any errors and
omissions that may occur and would appreciate being informed of any errors found. FINCAD will correct
any such errors and omissions in a subsequent version, as feasible. Please contact us at:

FINCAD
Central City, Suite 1750
13450 102nd Avenue
Surrey, BC V3T 5X3 Canada

or

Block 4, Blackrock Business Park
Carysfort Avenue, Blackrock
Dublin, Ireland

www.fincad.com

Document Name: Universal Algorithmic Differentiation™ in the F3 Platform

Disclaimer

Copyright

Trademarks

Revisions

Document
Information

	1 Abstract
	2 Introduction
	3 The conceptual structure of exposure
	3.1 Market data
	3.2 Storing and reporting exposure
	3.3 The mathematics of exposure
	3.4 Exposure projection
	3.5 Storage model

	4 The valuation stack
	4.1 Parameters
	4.2 Function exposure
	4.3 Engine exposure

	5 Calibration
	5.1 Root searches
	5.2 Gradient descent and global optimizers

	6 Discontinuities
	7 Optimizations
	7.1 Flattening
	7.2 Underlying projectors
	7.3 Peeking through

	8 Automatic Differentiation and Exposure Projection
	8.1 Brief summary of Automatic Differentiation
	8.2 Comparison with Exposure Projection

	9 Applications
	9.1 Hedging a derivatives portfolio
	9.2 Hedging CVA
	9.2.1 CVA trade structure
	9.2.2 Modeling and valuation

	10 Conclusion
	11 Acknowledgements
	Bibliography
	Disclaimer
	Copyright
	Trademarks
	Revisions
	Document Information

